convert_super.py 31.6 KB
Newer Older
C
ceci3 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import inspect
import decorator
import logging
C
ceci3 已提交
18
import numbers
C
ceci3 已提交
19
import paddle
C
ceci3 已提交
20
from ...common import get_logger
C
ceci3 已提交
21 22 23 24 25
from .utils.utils import get_paddle_version
pd_ver = get_paddle_version()
if pd_ver == 185:
    import paddle.fluid.dygraph.nn as nn
    from paddle.fluid.dygraph.nn import Conv2D, Conv2DTranspose, Linear, LayerNorm, Embedding
C
ceci3 已提交
26
    from paddle.fluid import ParamAttr
C
ceci3 已提交
27 28
    from .layers_old import *
    from . import layers_old as layers
C
ceci3 已提交
29
    Layer = paddle.fluid.dygraph.Layer
C
ceci3 已提交
30 31 32
else:
    import paddle.nn as nn
    from paddle.nn import Conv2D, Conv2DTranspose, Linear, LayerNorm, Embedding
C
ceci3 已提交
33
    from paddle import ParamAttr
C
ceci3 已提交
34 35
    from .layers import *
    from . import layers
C
ceci3 已提交
36
    Layer = paddle.nn.Layer
C
ceci3 已提交
37 38 39

_logger = get_logger(__name__, level=logging.INFO)

C
ceci3 已提交
40
__all__ = ['supernet', 'Convert']
C
ceci3 已提交
41

C
ceci3 已提交
42
WEIGHT_LAYER = ['conv', 'linear', 'embedding']
C
ceci3 已提交
43 44 45


class Convert:
C
ceci3 已提交
46 47 48 49 50 51 52 53 54 55 56
    """
    Convert network to the supernet according to the search space.
    Parameters:
        context(paddleslim.nas.ofa.supernet): search space defined by the user.
    Examples:
        .. code-block:: python
          from paddleslim.nas.ofa import supernet, Convert
          sp_net_config = supernet(kernel_size=(3, 5, 7), expand_ratio=[1, 2, 4])
          convert = Convert(sp_net_config)
    """

C
ceci3 已提交
57 58 59
    def __init__(self, context):
        self.context = context

C
ceci3 已提交
60 61 62 63 64 65 66
    def _change_name(self, layer, pd_ver, has_bias=True, conv=False):
        if conv:
            w_attr = layer._param_attr
        else:
            w_attr = layer._param_attr if pd_ver == 185 else layer._weight_attr

        if isinstance(w_attr, ParamAttr):
C
ceci3 已提交
67 68
            if w_attr != None and not isinstance(w_attr,
                                                 bool) and w_attr.name != None:
C
ceci3 已提交
69 70 71 72
                w_attr.name = 'super_' + w_attr.name

        if has_bias:
            if isinstance(layer._bias_attr, ParamAttr):
C
ceci3 已提交
73 74 75
                if layer._bias_attr != None and not isinstance(
                        layer._bias_attr,
                        bool) and layer._bias_attr.name != None:
C
ceci3 已提交
76 77
                    layer._bias_attr.name = 'super_' + layer._bias_attr.name

C
ceci3 已提交
78
    def convert(self, network):
C
ceci3 已提交
79 80 81 82 83 84 85 86 87 88 89
        """
        The function to convert the network to a supernet.
        Parameters:
            network(paddle.nn.Layer|list(paddle.nn.Layer)): instance of the model or list of instance of layers.
        Examples:
            .. code-block:: python
              from paddle.vision.models import mobilenet_v1
              from paddleslim.nas.ofa import supernet, Convert
              sp_net_config = supernet(kernel_size=(3, 5, 7), expand_ratio=[1, 2, 4])
              convert = Convert(sp_net_config).convert(mobilenet_v1())
        """
C
ceci3 已提交
90 91
        # search the first and last weight layer, don't change out channel of the last weight layer
        # don't change in channel of the first weight layer
C
ceci3 已提交
92 93 94 95 96 97 98
        model = []
        if isinstance(network, Layer):
            for name, sublayer in network.named_sublayers():
                model.append(sublayer)
        else:
            model = network

C
ceci3 已提交
99 100 101 102
        first_weight_layer_idx = -1
        last_weight_layer_idx = -1
        weight_layer_count = 0
        # NOTE: pre_channel store for shortcut module
C
ceci3 已提交
103
        pre_channel = None
C
ceci3 已提交
104 105 106
        cur_channel = None
        for idx, layer in enumerate(model):
            cls_name = layer.__class__.__name__.lower()
C
ceci3 已提交
107
            if 'conv' in cls_name or 'linear' in cls_name or 'embedding' in cls_name:
C
ceci3 已提交
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
                weight_layer_count += 1
                last_weight_layer_idx = idx
                if first_weight_layer_idx == -1:
                    first_weight_layer_idx = idx

        if getattr(self.context, 'channel', None) != None:
            assert len(
                self.context.channel
            ) == weight_layer_count, "length of channel must same as weight layer."

        for idx, layer in enumerate(model):
            if isinstance(layer, Conv2D):
                attr_dict = layer.__dict__
                key = attr_dict['_full_name']

                new_attr_name = [
C
ceci3 已提交
124
                    'stride', 'padding', 'dilation', 'groups', 'bias_attr'
C
ceci3 已提交
125
                ]
C
ceci3 已提交
126 127 128 129 130 131
                if pd_ver == 185:
                    new_attr_name += ['param_attr', 'use_cudnn', 'act', 'dtype']
                else:
                    new_attr_name += [
                        'weight_attr', 'data_format', 'padding_mode'
                    ]
C
ceci3 已提交
132

C
ceci3 已提交
133
                self._change_name(layer, pd_ver, conv=True)
C
ceci3 已提交
134
                new_attr_dict = dict.fromkeys(new_attr_name, None)
C
ceci3 已提交
135
                new_attr_dict['candidate_config'] = dict()
C
ceci3 已提交
136 137 138 139 140 141 142 143
                if pd_ver == 185:
                    new_attr_dict['num_channels'] = None
                    new_attr_dict['num_filters'] = None
                    new_attr_dict['filter_size'] = None
                else:
                    new_attr_dict['in_channels'] = None
                    new_attr_dict['out_channels'] = None
                    new_attr_dict['kernel_size'] = None
C
ceci3 已提交
144 145 146
                self.kernel_size = getattr(self.context, 'kernel_size', None)

                # if the kernel_size of conv is 1, don't change it.
C
ceci3 已提交
147 148 149
                fks = '_filter_size' if '_filter_size' in attr_dict.keys(
                ) else '_kernel_size'

C
ceci3 已提交
150
                ks = [attr_dict[fks]] if isinstance(
C
ceci3 已提交
151 152 153 154 155
                    attr_dict[fks], numbers.Integral) else attr_dict[fks]

                if self.kernel_size and int(ks[0]) != 1:
                    new_attr_dict['transform_kernel'] = True
                    new_attr_dict[fks[1:]] = max(self.kernel_size)
C
ceci3 已提交
156 157 158 159
                    new_attr_dict['candidate_config'].update({
                        'kernel_size': self.kernel_size
                    })
                else:
C
ceci3 已提交
160
                    new_attr_dict[fks[1:]] = attr_dict[fks]
C
ceci3 已提交
161

C
ceci3 已提交
162 163 164 165
                in_key = '_num_channels' if '_num_channels' in attr_dict.keys(
                ) else '_in_channels'
                out_key = '_num_filters' if '_num_filters' in attr_dict.keys(
                ) else '_out_channels'
C
ceci3 已提交
166 167 168
                if self.context.expand:
                    ### first super convolution
                    if idx == first_weight_layer_idx:
C
ceci3 已提交
169
                        new_attr_dict[in_key[1:]] = attr_dict[in_key]
C
ceci3 已提交
170
                    else:
C
ceci3 已提交
171 172 173
                        new_attr_dict[in_key[1:]] = int(self.context.expand *
                                                        attr_dict[in_key])

C
ceci3 已提交
174 175
                    ### last super convolution
                    if idx == last_weight_layer_idx:
C
ceci3 已提交
176
                        new_attr_dict[out_key[1:]] = attr_dict[out_key]
C
ceci3 已提交
177
                    else:
C
ceci3 已提交
178 179
                        new_attr_dict[out_key[1:]] = int(self.context.expand *
                                                         attr_dict[out_key])
C
ceci3 已提交
180 181 182 183 184
                        new_attr_dict['candidate_config'].update({
                            'expand_ratio': self.context.expand_ratio
                        })
                elif self.context.channel:
                    if attr_dict['_groups'] != None and (
C
ceci3 已提交
185 186
                            int(attr_dict['_groups']) == int(attr_dict[in_key])
                    ):
C
ceci3 已提交
187 188 189 190 191 192 193 194 195 196
                        ### depthwise conv, if conv is depthwise, use pre channel as cur_channel
                        _logger.warn(
                        "If convolution is a depthwise conv, output channel change" \
                        " to the same channel with input, output channel in search is not used."
                        )
                        cur_channel = pre_channel
                    else:
                        cur_channel = self.context.channel[0]
                    self.context.channel = self.context.channel[1:]
                    if idx == first_weight_layer_idx:
C
ceci3 已提交
197
                        new_attr_dict[in_key[1:]] = attr_dict[in_key]
C
ceci3 已提交
198
                    else:
C
ceci3 已提交
199
                        new_attr_dict[in_key[1:]] = max(pre_channel)
C
ceci3 已提交
200 201

                    if idx == last_weight_layer_idx:
C
ceci3 已提交
202
                        new_attr_dict[out_key[1:]] = attr_dict[out_key]
C
ceci3 已提交
203
                    else:
C
ceci3 已提交
204
                        new_attr_dict[out_key[1:]] = max(cur_channel)
C
ceci3 已提交
205 206 207 208 209
                        new_attr_dict['candidate_config'].update({
                            'channel': cur_channel
                        })
                        pre_channel = cur_channel
                else:
C
ceci3 已提交
210 211
                    new_attr_dict[in_key[1:]] = attr_dict[in_key]
                    new_attr_dict[out_key[1:]] = attr_dict[out_key]
C
ceci3 已提交
212 213

                for attr in new_attr_name:
C
ceci3 已提交
214 215 216 217
                    if attr == 'weight_attr':
                        new_attr_dict[attr] = attr_dict['_param_attr']
                    else:
                        new_attr_dict[attr] = attr_dict['_' + attr]
C
ceci3 已提交
218 219 220 221 222 223 224

                del layer

                if attr_dict['_groups'] == None or int(attr_dict[
                        '_groups']) == 1:
                    ### standard conv
                    layer = Block(SuperConv2D(**new_attr_dict), key=key)
C
ceci3 已提交
225
                elif int(attr_dict['_groups']) == int(attr_dict[in_key]):
C
ceci3 已提交
226 227 228
                    # if conv is depthwise conv, groups = in_channel, out_channel = in_channel,
                    # channel in candidate_config = in_channel_list
                    if 'channel' in new_attr_dict['candidate_config']:
C
ceci3 已提交
229 230
                        new_attr_dict[in_key[1:]] = max(cur_channel)
                        new_attr_dict[out_key[1:]] = new_attr_dict[in_key[1:]]
C
ceci3 已提交
231 232
                        new_attr_dict['candidate_config'][
                            'channel'] = cur_channel
C
ceci3 已提交
233
                    new_attr_dict['groups'] = new_attr_dict[in_key[1:]]
C
ceci3 已提交
234 235 236 237 238 239 240
                    layer = Block(
                        SuperDepthwiseConv2D(**new_attr_dict), key=key)
                else:
                    ### group conv
                    layer = Block(SuperGroupConv2D(**new_attr_dict), key=key)
                model[idx] = layer

C
ceci3 已提交
241 242 243 244
            elif isinstance(layer,
                            getattr(nn, 'BatchNorm2D', nn.BatchNorm)) and (
                                getattr(self.context, 'expand', None) != None or
                                getattr(self.context, 'channel', None) != None):
C
ceci3 已提交
245 246 247 248 249
                # num_features in BatchNorm don't change after last weight operators
                if idx > last_weight_layer_idx:
                    continue

                attr_dict = layer.__dict__
C
ceci3 已提交
250 251 252 253 254 255 256 257 258 259
                new_attr_name = ['momentum', 'epsilon', 'bias_attr']

                if pd_ver == 185:
                    new_attr_name += [
                        'param_attr', 'act', 'dtype', 'in_place', 'data_layout',
                        'is_test', 'use_global_stats', 'trainable_statistics'
                    ]
                else:
                    new_attr_name += ['weight_attr', 'data_format', 'name']

C
ceci3 已提交
260
                self._change_name(layer, pd_ver)
C
ceci3 已提交
261 262 263 264 265 266 267
                new_attr_dict = dict.fromkeys(new_attr_name, None)
                if pd_ver == 185:
                    new_attr_dict['num_channels'] = None
                else:
                    new_attr_dict['num_features'] = None
                new_key = 'num_channels' if 'num_channels' in new_attr_dict.keys(
                ) else 'num_features'
C
ceci3 已提交
268
                if self.context.expand:
C
ceci3 已提交
269 270
                    new_attr_dict[new_key] = int(
                        self.context.expand *
C
ceci3 已提交
271 272
                        layer._parameters['weight'].shape[0])
                elif self.context.channel:
C
ceci3 已提交
273
                    new_attr_dict[new_key] = max(cur_channel)
C
ceci3 已提交
274
                else:
C
ceci3 已提交
275 276 277
                    new_attr_dict[new_key] = attr_dict[
                        '_num_channels'] if '_num_channels' in attr_dict.keys(
                        ) else attr_dict['_num_features']
C
ceci3 已提交
278 279

                for attr in new_attr_name:
C
ceci3 已提交
280
                    new_attr_dict[attr] = attr_dict['_' + attr]
C
ceci3 已提交
281 282 283

                del layer, attr_dict

C
ceci3 已提交
284 285 286
                layer = layers.SuperBatchNorm(
                    **new_attr_dict
                ) if pd_ver == 185 else layers.SuperBatchNorm2D(**new_attr_dict)
C
ceci3 已提交
287 288 289 290 291 292 293 294 295
                model[idx] = layer

            ### assume output_size = None, filter_size != None
            ### NOTE: output_size != None may raise error, solve when it happend. 
            elif isinstance(layer, Conv2DTranspose):
                attr_dict = layer.__dict__
                key = attr_dict['_full_name']

                new_attr_name = [
C
ceci3 已提交
296
                    'stride', 'padding', 'dilation', 'groups', 'bias_attr'
C
ceci3 已提交
297
                ]
C
ceci3 已提交
298 299 300
                assert getattr(
                    attr_dict, '_filter_size', '_kernel_size'
                ) != None, "Conv2DTranspose only support kernel size != None now"
C
ceci3 已提交
301

C
ceci3 已提交
302 303 304 305 306 307 308 309 310 311
                if pd_ver == 185:
                    new_attr_name += [
                        'output_size', 'param_attr', 'use_cudnn', 'act', 'dtype'
                    ]
                else:
                    new_attr_name += [
                        'output_padding', 'weight_attr', 'data_format'
                    ]

                new_attr_dict = dict.fromkeys(new_attr_name, None)
C
ceci3 已提交
312
                new_attr_dict['candidate_config'] = dict()
C
ceci3 已提交
313 314 315 316 317 318 319 320
                if pd_ver == 185:
                    new_attr_dict['num_channels'] = None
                    new_attr_dict['num_filters'] = None
                    new_attr_dict['filter_size'] = None
                else:
                    new_attr_dict['in_channels'] = None
                    new_attr_dict['out_channels'] = None
                    new_attr_dict['kernel_size'] = None
C
ceci3 已提交
321 322

                self._change_name(layer, pd_ver, conv=True)
C
ceci3 已提交
323 324 325
                self.kernel_size = getattr(self.context, 'kernel_size', None)

                # if the kernel_size of conv transpose is 1, don't change it.
C
ceci3 已提交
326 327
                fks = '_filter_size' if '_filter_size' in attr_dict.keys(
                ) else '_kernel_size'
C
ceci3 已提交
328
                ks = [attr_dict[fks]] if isinstance(
C
ceci3 已提交
329 330 331 332 333
                    attr_dict[fks], numbers.Integral) else attr_dict[fks]

                if self.kernel_size and int(ks[0]) != 1:
                    new_attr_dict['transform_kernel'] = True
                    new_attr_dict[fks[1:]] = max(self.kernel_size)
C
ceci3 已提交
334 335 336 337
                    new_attr_dict['candidate_config'].update({
                        'kernel_size': self.kernel_size
                    })
                else:
C
ceci3 已提交
338
                    new_attr_dict[fks[1:]] = attr_dict[fks]
C
ceci3 已提交
339

C
ceci3 已提交
340 341 342 343
                in_key = '_num_channels' if '_num_channels' in attr_dict.keys(
                ) else '_in_channels'
                out_key = '_num_filters' if '_num_filters' in attr_dict.keys(
                ) else '_out_channels'
C
ceci3 已提交
344 345 346
                if self.context.expand:
                    ### first super convolution transpose
                    if idx == first_weight_layer_idx:
C
ceci3 已提交
347
                        new_attr_dict[in_key[1:]] = attr_dict[in_key]
C
ceci3 已提交
348
                    else:
C
ceci3 已提交
349 350
                        new_attr_dict[in_key[1:]] = int(self.context.expand *
                                                        attr_dict[in_key])
C
ceci3 已提交
351 352
                    ### last super convolution transpose
                    if idx == last_weight_layer_idx:
C
ceci3 已提交
353
                        new_attr_dict[out_key[1:]] = attr_dict[out_key]
C
ceci3 已提交
354
                    else:
C
ceci3 已提交
355 356
                        new_attr_dict[out_key[1:]] = int(self.context.expand *
                                                         attr_dict[out_key])
C
ceci3 已提交
357 358 359 360 361
                        new_attr_dict['candidate_config'].update({
                            'expand_ratio': self.context.expand_ratio
                        })
                elif self.context.channel:
                    if attr_dict['_groups'] != None and (
C
ceci3 已提交
362 363
                            int(attr_dict['_groups']) == int(attr_dict[in_key])
                    ):
C
ceci3 已提交
364 365 366 367 368 369 370 371 372 373
                        ### depthwise conv_transpose
                        _logger.warn(
                        "If convolution is a depthwise conv_transpose, output channel " \
                        "change to the same channel with input, output channel in search is not used."
                        )
                        cur_channel = pre_channel
                    else:
                        cur_channel = self.context.channel[0]
                    self.context.channel = self.context.channel[1:]
                    if idx == first_weight_layer_idx:
C
ceci3 已提交
374
                        new_attr_dict[in_key[1:]] = attr_dict[in_key]
C
ceci3 已提交
375
                    else:
C
ceci3 已提交
376
                        new_attr_dict[in_key[1:]] = max(pre_channel)
C
ceci3 已提交
377 378

                    if idx == last_weight_layer_idx:
C
ceci3 已提交
379
                        new_attr_dict[out_key[1:]] = attr_dict[out_key]
C
ceci3 已提交
380
                    else:
C
ceci3 已提交
381
                        new_attr_dict[out_key[1:]] = max(cur_channel)
C
ceci3 已提交
382 383 384 385 386
                        new_attr_dict['candidate_config'].update({
                            'channel': cur_channel
                        })
                        pre_channel = cur_channel
                else:
C
ceci3 已提交
387 388
                    new_attr_dict[in_key[1:]] = attr_dict[in_key]
                    new_attr_dict[out_key[1:]] = attr_dict[out_key]
C
ceci3 已提交
389 390

                for attr in new_attr_name:
C
ceci3 已提交
391 392 393 394 395 396
                    if attr == 'weight_attr':
                        new_attr_dict[attr] = attr_dict['_param_attr']
                    elif attr == 'output_padding':
                        new_attr_dict[attr] = attr_dict[attr]
                    else:
                        new_attr_dict[attr] = attr_dict['_' + attr]
C
ceci3 已提交
397 398 399

                del layer

C
ceci3 已提交
400
                if getattr(new_attr_dict, 'output_size', None) == []:
C
ceci3 已提交
401 402 403 404 405 406 407
                    new_attr_dict['output_size'] = None

                if attr_dict['_groups'] == None or int(attr_dict[
                        '_groups']) == 1:
                    ### standard conv_transpose
                    layer = Block(
                        SuperConv2DTranspose(**new_attr_dict), key=key)
C
ceci3 已提交
408
                elif int(attr_dict['_groups']) == int(attr_dict[in_key]):
C
ceci3 已提交
409 410 411
                    # if conv is depthwise conv, groups = in_channel, out_channel = in_channel,
                    # channel in candidate_config = in_channel_list
                    if 'channel' in new_attr_dict['candidate_config']:
C
ceci3 已提交
412 413
                        new_attr_dict[in_key[1:]] = max(cur_channel)
                        new_attr_dict[out_key[1:]] = new_attr_dict[in_key[1:]]
C
ceci3 已提交
414 415
                        new_attr_dict['candidate_config'][
                            'channel'] = cur_channel
C
ceci3 已提交
416
                    new_attr_dict['groups'] = new_attr_dict[in_key[1:]]
C
ceci3 已提交
417 418 419 420 421 422 423 424 425 426 427 428 429
                    layer = Block(
                        SuperDepthwiseConv2DTranspose(**new_attr_dict), key=key)
                else:
                    ### group conv_transpose
                    layer = Block(
                        SuperGroupConv2DTranspose(**new_attr_dict), key=key)
                model[idx] = layer

            elif isinstance(layer, Linear) and (
                    getattr(self.context, 'expand', None) != None or
                    getattr(self.context, 'channel', None) != None):
                attr_dict = layer.__dict__
                key = attr_dict['_full_name']
C
ceci3 已提交
430
                if pd_ver == 185:
C
ceci3 已提交
431
                    new_attr_name = ['act', 'dtype']
C
ceci3 已提交
432 433
                else:
                    new_attr_name = ['weight_attr', 'bias_attr']
C
ceci3 已提交
434
                self._change_name(layer, pd_ver)
C
ceci3 已提交
435 436
                in_nc, out_nc = layer._parameters['weight'].shape

C
ceci3 已提交
437
                new_attr_dict = dict.fromkeys(new_attr_name, None)
C
ceci3 已提交
438
                new_attr_dict['candidate_config'] = dict()
C
ceci3 已提交
439 440 441 442 443 444 445
                if pd_ver == 185:
                    new_attr_dict['input_dim'] = None
                    new_attr_dict['output_dim'] = None
                else:
                    new_attr_dict['in_features'] = None
                    new_attr_dict['out_features'] = None

C
ceci3 已提交
446 447
                in_key = '_input_dim' if pd_ver == 185 else '_in_features'
                out_key = '_output_dim' if pd_ver == 185 else '_out_features'
C
ceci3 已提交
448 449
                attr_dict[in_key] = in_nc
                attr_dict[out_key] = out_nc
C
ceci3 已提交
450 451
                if self.context.expand:
                    if idx == first_weight_layer_idx:
C
ceci3 已提交
452
                        new_attr_dict[in_key[1:]] = int(attr_dict[in_key])
C
ceci3 已提交
453
                    else:
C
ceci3 已提交
454 455
                        new_attr_dict[in_key[1:]] = int(self.context.expand *
                                                        attr_dict[in_key])
C
ceci3 已提交
456 457

                    if idx == last_weight_layer_idx:
C
ceci3 已提交
458
                        new_attr_dict[out_key[1:]] = int(attr_dict[out_key])
C
ceci3 已提交
459
                    else:
C
ceci3 已提交
460 461
                        new_attr_dict[out_key[1:]] = int(self.context.expand *
                                                         attr_dict[out_key])
C
ceci3 已提交
462 463 464 465 466 467 468
                        new_attr_dict['candidate_config'].update({
                            'expand_ratio': self.context.expand_ratio
                        })
                elif self.context.channel:
                    cur_channel = self.context.channel[0]
                    self.context.channel = self.context.channel[1:]
                    if idx == first_weight_layer_idx:
C
ceci3 已提交
469
                        new_attr_dict[in_key[1:]] = int(attr_dict[in_key])
C
ceci3 已提交
470
                    else:
C
ceci3 已提交
471
                        new_attr_dict[in_key[1:]] = max(pre_channel)
C
ceci3 已提交
472 473

                    if idx == last_weight_layer_idx:
C
ceci3 已提交
474
                        new_attr_dict[out_key[1:]] = int(attr_dict[out_key])
C
ceci3 已提交
475
                    else:
C
ceci3 已提交
476
                        new_attr_dict[out_key[1:]] = max(cur_channel)
C
ceci3 已提交
477 478 479 480 481
                        new_attr_dict['candidate_config'].update({
                            'channel': cur_channel
                        })
                        pre_channel = cur_channel
                else:
C
ceci3 已提交
482 483
                    new_attr_dict[in_key[1:]] = int(attr_dict[in_key])
                    new_attr_dict[out_key[1:]] = int(attr_dict[out_key])
C
ceci3 已提交
484 485

                for attr in new_attr_name:
C
ceci3 已提交
486
                    new_attr_dict[attr] = attr_dict['_' + attr]
C
ceci3 已提交
487 488 489 490 491 492

                del layer, attr_dict

                layer = Block(SuperLinear(**new_attr_dict), key=key)
                model[idx] = layer

C
ceci3 已提交
493 494 495 496 497 498
            elif isinstance(
                    layer,
                    getattr(nn, 'InstanceNorm2D',
                            paddle.fluid.dygraph.nn.InstanceNorm)) and (
                                getattr(self.context, 'expand', None) != None or
                                getattr(self.context, 'channel', None) != None):
C
ceci3 已提交
499 500 501 502 503
                # num_features in InstanceNorm don't change after last weight operators
                if idx > last_weight_layer_idx:
                    continue

                attr_dict = layer.__dict__
C
ceci3 已提交
504 505 506 507 508 509
                if pd_ver == 185:
                    new_attr_name = [
                        'bias_attr', 'epsilon', 'param_attr', 'dtype'
                    ]
                else:
                    new_attr_name = ['bias_attr', 'epsilon', 'weight_attr']
C
ceci3 已提交
510 511

                self._change_name(layer, pd_ver)
C
ceci3 已提交
512 513 514 515 516 517 518 519 520 521 522
                new_attr_dict = dict.fromkeys(new_attr_name, None)
                if pd_ver == 185:
                    new_attr_dict['num_channels'] = None
                else:
                    new_attr_dict['num_features'] = None
                new_key = '_num_channels' if '_num_channels' in new_attr_dict.keys(
                ) else '_num_features'
                ### 10 is a default channel in the case of weight_attr=False, in this condition, num of channels if useless, so give it arbitrarily.
                attr_dict[new_key] = layer._parameters['scale'].shape[0] if len(
                    layer._parameters) != 0 else 10

C
ceci3 已提交
523
                if self.context.expand:
C
ceci3 已提交
524 525
                    new_attr_dict[new_key[1:]] = int(self.context.expand *
                                                     attr_dict[new_key])
C
ceci3 已提交
526
                elif self.context.channel:
C
ceci3 已提交
527
                    new_attr_dict[new_key[1:]] = max(cur_channel)
C
ceci3 已提交
528
                else:
C
ceci3 已提交
529
                    new_attr_dict[new_key[1:]] = attr_dict[new_key]
C
ceci3 已提交
530 531

                for attr in new_attr_name:
C
ceci3 已提交
532
                    new_attr_dict[attr] = attr_dict['_' + attr]
C
ceci3 已提交
533 534 535

                del layer, attr_dict

C
ceci3 已提交
536 537 538 539
                layer = layers.SuperInstanceNorm(
                    **new_attr_dict
                ) if pd_ver == 185 else layers.SuperInstanceNorm2D(
                    **new_attr_dict)
C
ceci3 已提交
540 541
                model[idx] = layer

C
ceci3 已提交
542 543 544 545 546 547 548 549
            elif isinstance(layer, LayerNorm) and (
                    getattr(self.context, 'expand', None) != None or
                    getattr(self.context, 'channel', None) != None):
                ### TODO(ceci3): fix when normalized_shape != last_dim_of_input
                if idx > last_weight_layer_idx:
                    continue

                attr_dict = layer.__dict__
C
ceci3 已提交
550 551 552 553 554 555 556 557
                new_attr_name = ['epsilon', 'bias_attr']
                if pd_ver == 185:
                    new_attr_name += [
                        'scale', 'shift', 'param_attr', 'act', 'dtype'
                    ]
                else:
                    new_attr_name += ['weight_attr']

C
ceci3 已提交
558
                self._change_name(layer, pd_ver)
C
ceci3 已提交
559 560
                new_attr_dict = dict.fromkeys(new_attr_name, None)
                new_attr_dict['normalized_shape'] = None
C
ceci3 已提交
561
                if self.context.expand:
C
ceci3 已提交
562 563
                    new_attr_dict['normalized_shape'] = int(
                        self.context.expand * attr_dict['_normalized_shape'][0])
C
ceci3 已提交
564 565 566 567 568 569 570
                elif self.context.channel:
                    new_attr_dict['normalized_shape'] = max(cur_channel)
                else:
                    new_attr_dict['normalized_shape'] = attr_dict[
                        '_normalized_shape']

                for attr in new_attr_name:
C
ceci3 已提交
571
                    new_attr_dict[attr] = attr_dict['_' + attr]
C
ceci3 已提交
572 573 574 575 576 577 578 579 580 581

                del layer, attr_dict
                layer = SuperLayerNorm(**new_attr_dict)
                model[idx] = layer

            elif isinstance(layer, Embedding) and (
                    getattr(self.context, 'expand', None) != None or
                    getattr(self.context, 'channel', None) != None):
                attr_dict = layer.__dict__
                key = attr_dict['_full_name']
C
ceci3 已提交
582
                new_attr_name = []
C
ceci3 已提交
583 584
                if pd_ver == 185:
                    new_attr_name += [
C
ceci3 已提交
585
                        'is_sparse', 'is_distributed', 'param_attr', 'dtype'
C
ceci3 已提交
586 587
                    ]
                else:
C
ceci3 已提交
588
                    new_attr_name += ['sparse', 'weight_attr', 'name']
C
ceci3 已提交
589

C
ceci3 已提交
590 591
                self._change_name(layer, pd_ver, has_bias=False)

C
ceci3 已提交
592
                new_attr_dict = dict.fromkeys(new_attr_name, None)
C
ceci3 已提交
593 594 595
                new_attr_dict['candidate_config'] = dict()
                bef_size = attr_dict['_size']
                if self.context.expand:
C
ceci3 已提交
596 597 598 599 600 601 602 603 604 605
                    if pd_ver == 185:
                        new_attr_dict['size'] = [
                            bef_size[0], int(self.context.expand * bef_size[1])
                        ]
                    else:
                        new_attr_dict['num_embeddings'] = attr_dict[
                            '_num_embeddings']
                        new_attr_dict['embedding_dim'] = int(
                            self.context.expand * attr_dict['_embedding_dim'])

C
ceci3 已提交
606 607 608 609 610 611 612
                    new_attr_dict['candidate_config'].update({
                        'expand_ratio': self.context.expand_ratio
                    })

                elif self.context.channel:
                    cur_channel = self.context.channel[0]
                    self.context.channel = self.context.channel[1:]
C
ceci3 已提交
613 614 615 616 617 618 619
                    if pd_ver == 185:
                        new_attr_dict['size'] = [bef_size[0], max(cur_channel)]
                    else:
                        new_attr_dict['num_embeddings'] = attr_dict[
                            '_num_embeddings']
                        new_attr_dict['embedding_dim'] = max(cur_channel)

C
ceci3 已提交
620 621 622 623 624
                    new_attr_dict['candidate_config'].update({
                        'channel': cur_channel
                    })
                    pre_channel = cur_channel
                else:
C
ceci3 已提交
625 626 627 628 629 630 631
                    if pf_ver == 185:
                        new_attr_dict['size'] = bef_size
                    else:
                        new_attr_dict['num_embeddings'] = attr_dict[
                            '_num_embeddings']
                        new_attr_dict['embedding_dim'] = attr_dict[
                            '_embedding_dim']
C
ceci3 已提交
632 633

                for attr in new_attr_name:
C
ceci3 已提交
634
                    new_attr_dict[attr] = attr_dict['_' + attr]
C
ceci3 已提交
635

C
ceci3 已提交
636 637 638
                new_attr_dict['padding_idx'] = None if attr_dict[
                    '_padding_idx'] == -1 else attr_dict['_padding_idx']

C
ceci3 已提交
639 640 641 642 643
                del layer, attr_dict

                layer = Block(SuperEmbedding(**new_attr_dict), key=key)
                model[idx] = layer

C
ceci3 已提交
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
        def split_prefix(net, name_list):
            if len(name_list) > 1:
                net = split_prefix(getattr(net, name_list[0]), name_list[1:])
            elif len(name_list) == 1:
                net = getattr(net, name_list[0])
            else:
                raise NotImplementedError("name error")
            return net

        if isinstance(network, Layer):
            for idx, (name, sublayer) in enumerate(network.named_sublayers()):
                if len(name.split('.')) > 1:
                    net = split_prefix(network, name.split('.')[:-1])
                else:
                    net = network
                setattr(net, name.split('.')[-1], model[idx])

        return network
C
ceci3 已提交
662 663 664


class supernet:
C
ceci3 已提交
665 666 667 668 669 670 671 672
    """
    Search space of the network.
    Parameters:
        kernel_size(list|tuple, optional): search space for the kernel size of the Conv2D.
        expand_ratio(list|tuple, optional): the search space for the expand ratio of the number of channels of Conv2D, the expand ratio of the output dimensions of the Embedding or Linear, which means this parameter get the number of channels of each OP in the converted super network based on the the channels of each OP in the original model, so this parameter The length is 1. Just set one between this parameter and ``channel``.
        channel(list|tuple, optional): the search space for the number of channels of Conv2D, the output dimensions of the Embedding or Linear, this parameter directly sets the number of channels of each OP in the super network, so the length of this parameter needs to be the same as the total number that of Conv2D, Embedding, and Linear included in the network. Just set one between this parameter and ``expand_ratio``.
    """

C
ceci3 已提交
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
    def __init__(self, **kwargs):
        for key, value in kwargs.items():
            setattr(self, key, value)

        assert (
            getattr(self, 'expand_ratio', None) == None or
            getattr(self, 'channel', None) == None
        ), "expand_ratio and channel CANNOT be NOT None at the same time."

        self.expand = None
        if 'expand_ratio' in kwargs.keys():
            if isinstance(self.expand_ratio, list) or isinstance(
                    self.expand_ratio, tuple):
                self.expand = max(self.expand_ratio)
            elif isinstance(self.expand_ratio, int):
                self.expand = self.expand_ratio
C
ceci3 已提交
689 690
        if 'channel' not in kwargs.keys():
            self.channel = None
C
ceci3 已提交
691 692 693 694 695

    def __enter__(self):
        return Convert(self)

    def __exit__(self, exc_type, exc_val, exc_tb):
C
ceci3 已提交
696 697 698
        self.expand = None
        self.channel = None
        self.kernel_size = None
C
ceci3 已提交
699 700 701 702 703 704 705 706 707


#def ofa_supernet(kernel_size, expand_ratio):
#    def _ofa_supernet(func):
#        @functools.wraps(func)
#        def convert(*args, **kwargs):
#            supernet_convert(*args, **kwargs)
#        return convert
#    return _ofa_supernet