layers.py 64.8 KB
Newer Older
C
Chang Xu 已提交
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
C
ceci3 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

C
ceci3 已提交
15 16
### NOTE: the API of this file is based on Paddle2.0, the API in layers_old.py is based on Paddle1.8

C
ceci3 已提交
17 18
import numpy as np
import logging
C
ceci3 已提交
19 20 21
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
C
ceci3 已提交
22
import paddle.fluid.core as core
C
Chang Xu 已提交
23
from paddle import _C_ops, _legacy_C_ops
24 25 26
from paddle.fluid.framework import in_dygraph_mode, _in_legacy_dygraph, _non_static_mode
from paddle.fluid.data_feeder import check_variable_and_dtype
from paddle.fluid.dygraph.layer_object_helper import LayerObjectHelper
C
ceci3 已提交
27 28 29

from ...common import get_logger
from .utils.utils import compute_start_end, get_same_padding, convert_to_list
30
from .layers_base import *
C
ceci3 已提交
31 32 33

__all__ = [
    'SuperConv2D', 'SuperConv2DTranspose', 'SuperSeparableConv2D',
34
    'SuperBatchNorm2D', 'SuperLinear', 'SuperInstanceNorm2D',
C
ceci3 已提交
35
    'SuperGroupConv2D', 'SuperDepthwiseConv2D', 'SuperGroupConv2DTranspose',
C
Chang Xu 已提交
36 37
    'SuperDepthwiseConv2DTranspose', 'SuperLayerNorm', 'SuperEmbedding',
    'SuperSyncBatchNorm'
C
ceci3 已提交
38 39 40 41 42 43 44
]

_logger = get_logger(__name__, level=logging.INFO)

### TODO: if task is elastic width, need to add re_organize_middle_weight in 1x1 conv in MBBlock


C
ceci3 已提交
45
class SuperConv2D(nn.Conv2D):
W
whs 已提交
46
    """This interface is used to construct a callable object of the ``SuperConv2D``  class.
C
ceci3 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
    Note: the channel in config need to less than first defined.
    The super convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
    the feature map, H is the height of the feature map, and W is the width of the feature map.
    Filter's shape is [MCHW] , where M is the number of output feature map,
    C is the number of input feature map, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more details.
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
    For each input :math:`X`, the equation is:
    .. math::
C
ceci3 已提交
64
        Out = sigma (W \\ast X + b)
C
ceci3 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
    Where:
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
    Example:
        - Input:
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
        - Output:
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
        Where
        .. math::
C
ceci3 已提交
80
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1   
C
ceci3 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
    Parameters:
        num_channels(int): The number of channels in the input image.
        num_filters(int): The number of filter. It is as same as the output
            feature map.
        filter_size (int or tuple): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        candidate_config(dict, optional): Dictionary descripts candidate config of this layer,
            such as {'kernel_size': (3, 5, 7), 'channel': (4, 6, 8)}, means the kernel size of 
            this layer can be choose from (3, 5, 7), the key of candidate_config
            only can be 'kernel_size', 'channel' and 'expand_ratio', 'channel' and 'expand_ratio'
            CANNOT be set at the same time. Default: None.
        transform_kernel(bool, optional): Whether to use transform matrix to transform a large filter
            to a small filter. Default: False.
        stride (int or tuple, optional): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: 1.
        padding (int or tuple, optional): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: 0.
        dilation (int or tuple, optional): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: 1.
        groups (int, optional): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
W
whs 已提交
114
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\\_elem\\_num})^{0.5}`. Default: None.
C
ceci3 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            Default: None.
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
    Attribute:
        **weight** (Parameter): the learnable weights of filter of this layer.
        **bias** (Parameter or None): the learnable bias of this layer.
    Returns:
        None
    
    Raises:
        ValueError: if ``use_cudnn`` is not a bool value.
    Examples:
        .. code-block:: python
C
ceci3 已提交
135 136
          import paddle 
          from paddleslim.nas.ofa.layers import SuperConv2D
C
ceci3 已提交
137 138
          import numpy as np
          data = np.random.uniform(-1, 1, [10, 3, 32, 32]).astype('float32')
C
ceci3 已提交
139 140
          super_conv2d = SuperConv2D(3, 10, 3)
          config = {'channel': 5}
C
ceci3 已提交
141
          data = paddle.to_tensor(data)
C
ceci3 已提交
142
          conv = super_conv2d(data, config)
C
ceci3 已提交
143 144 145 146
    """

    ### NOTE: filter_size, num_channels and num_filters must be the max of candidate to define a largest network.
    def __init__(self,
C
ceci3 已提交
147 148 149
                 in_channels,
                 out_channels,
                 kernel_size,
C
ceci3 已提交
150 151 152 153
                 candidate_config={},
                 transform_kernel=False,
                 stride=1,
                 padding=0,
C
ceci3 已提交
154 155 156 157
                 dilation=1,
                 groups=1,
                 padding_mode='zeros',
                 weight_attr=None,
C
ceci3 已提交
158
                 bias_attr=None,
C
ceci3 已提交
159
                 data_format='NCHW'):
C
ceci3 已提交
160
        super(SuperConv2D, self).__init__(
C
ceci3 已提交
161 162 163 164 165 166 167 168 169 170 171
            in_channels,
            out_channels,
            kernel_size,
            stride=stride,
            padding=padding,
            padding_mode=padding_mode,
            dilation=dilation,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format)
C
ceci3 已提交
172 173

        self.candidate_config = candidate_config
C
Chang Xu 已提交
174
        self.cur_config = None
C
ceci3 已提交
175 176 177 178 179 180 181 182 183 184 185
        if len(candidate_config.items()) != 0:
            for k, v in candidate_config.items():
                candidate_config[k] = list(set(v))

        self.ks_set = candidate_config[
            'kernel_size'] if 'kernel_size' in candidate_config else None

        self.expand_ratio = candidate_config[
            'expand_ratio'] if 'expand_ratio' in candidate_config else None
        self.channel = candidate_config[
            'channel'] if 'channel' in candidate_config else None
C
ceci3 已提交
186
        self.base_channel = self._out_channels
C
ceci3 已提交
187
        if self.expand_ratio != None:
C
ceci3 已提交
188
            self.base_channel = int(self._out_channels / max(self.expand_ratio))
C
ceci3 已提交
189 190 191 192 193 194 195 196 197 198 199 200 201

        self.transform_kernel = transform_kernel
        if self.ks_set != None:
            self.ks_set.sort()
        if self.transform_kernel != False:
            scale_param = dict()
            ### create parameter to transform kernel
            for i in range(len(self.ks_set) - 1):
                ks_small = self.ks_set[i]
                ks_large = self.ks_set[i + 1]
                param_name = '%dto%d_matrix' % (ks_large, ks_small)
                ks_t = ks_small**2
                scale_param[param_name] = self.create_parameter(
C
ceci3 已提交
202
                    attr=paddle.ParamAttr(
C
ceci3 已提交
203
                        name=self._full_name + param_name,
C
ceci3 已提交
204
                        initializer=nn.initializer.Assign(np.eye(ks_t))),
C
ceci3 已提交
205 206 207 208 209 210 211
                    shape=(ks_t, ks_t),
                    dtype=self._dtype)

            for name, param in scale_param.items():
                setattr(self, name, param)

    def get_active_filter(self, in_nc, out_nc, kernel_size):
C
ceci3 已提交
212
        start, end = compute_start_end(self._kernel_size[0], kernel_size)
C
ceci3 已提交
213
        ### if NOT transform kernel, intercept a center filter with kernel_size from largest filter
214 215 216 217
        if self.weight.shape[0] <= out_nc and self.weight.shape[1] <= in_nc:
            filters = self.weight
        else:
            filters = self.weight[:out_nc, :in_nc, start:end, start:end]
C
ceci3 已提交
218
        if self.transform_kernel != False and kernel_size < self._kernel_size[
C
ceci3 已提交
219 220 221 222 223 224 225 226 227 228
                0]:
            ### if transform kernel, then use matrix to transform
            start_filter = self.weight[:out_nc, :in_nc, :, :]
            for i in range(len(self.ks_set) - 1, 0, -1):
                src_ks = self.ks_set[i]
                if src_ks <= kernel_size:
                    break
                target_ks = self.ks_set[i - 1]
                start, end = compute_start_end(src_ks, target_ks)
                _input_filter = start_filter[:, :, start:end, start:end]
C
ceci3 已提交
229
                _input_filter = paddle.reshape(
C
ceci3 已提交
230 231 232
                    _input_filter,
                    shape=[(_input_filter.shape[0] * _input_filter.shape[1]),
                           -1])
C
ceci3 已提交
233 234 235 236 237
                _input_filter = paddle.matmul(
                    _input_filter,
                    self.__getattr__('%dto%d_matrix' %
                                     (src_ks, target_ks)), False, False)
                _input_filter = paddle.reshape(
C
ceci3 已提交
238 239 240 241 242 243 244 245 246
                    _input_filter,
                    shape=[
                        filters.shape[0], filters.shape[1], target_ks, target_ks
                    ])
                start_filter = _input_filter
            filters = start_filter
        return filters

    def get_groups_in_out_nc(self, in_nc, out_nc):
C
ceci3 已提交
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
        if self._groups == 1:
            ### standard conv
            return self._groups, in_nc, out_nc
        elif self._groups == self._in_channels:
            ### depthwise convolution
            if in_nc != out_nc:
                _logger.debug(
                    "input channel and output channel in depthwise conv is different, change output channel to input channel! origin channel:(in_nc {}, out_nc {}): ".
                    format(in_nc, out_nc))
            groups = in_nc
            out_nc = in_nc
            return groups, in_nc, out_nc
        else:
            ### groups convolution
            ### conv: weight: (Cout, Cin/G, Kh, Kw)
            groups = self._groups
            in_nc = int(in_nc // groups)
            return groups, in_nc, out_nc
C
ceci3 已提交
265 266

    def forward(self, input, kernel_size=None, expand_ratio=None, channel=None):
C
ceci3 已提交
267 268 269 270 271 272 273
        """
        Parameters:
            input(Tensor): Input tensor.
            kernel_size(int, optional): the kernel size of the filter in actual calculation. Default: None.
            expand_ratio(int|float, optional): the expansion ratio of filter's channel number in actual calculation. Default: None.
            channel(int, optional): the expansion ratio of filter's channel number in actual calculation. Default: None.
        """
C
ceci3 已提交
274 275 276 277 278
        self.cur_config = {
            'kernel_size': kernel_size,
            'expand_ratio': expand_ratio,
            'channel': channel
        }
C
ceci3 已提交
279 280 281 282 283 284 285 286 287
        in_nc = int(input.shape[1])
        assert (
            expand_ratio == None or channel == None
        ), "expand_ratio and channel CANNOT be NOT None at the same time."
        if expand_ratio != None:
            out_nc = int(expand_ratio * self.base_channel)
        elif channel != None:
            out_nc = int(channel)
        else:
C
ceci3 已提交
288 289
            out_nc = self._out_channels
        ks = int(self._kernel_size[0]) if kernel_size == None else int(
C
ceci3 已提交
290 291 292 293 294 295
            kernel_size)

        groups, weight_in_nc, weight_out_nc = self.get_groups_in_out_nc(in_nc,
                                                                        out_nc)

        weight = self.get_active_filter(weight_in_nc, weight_out_nc, ks)
C
ceci3 已提交
296 297 298 299 300

        if kernel_size != None or 'kernel_size' in self.candidate_config.keys():
            padding = convert_to_list(get_same_padding(ks), 2)
        else:
            padding = self._padding
C
ceci3 已提交
301 302

        if self.bias is not None:
C
ceci3 已提交
303 304 305 306 307 308 309 310 311
            ### if conv is depthwise conv, expand_ratio=0, but conv' expand 
            ### ratio before depthwise conv is not equal to 1.0, the shape of the weight
            ### about this depthwise conv is changed, but out_nc is not change,
            ### so need to change bias shape according to the weight_out_nc.
            ### if in_nc > groups > 1, the actual output of conv is weight_out_nc * groups,
            ### so slice the shape of bias by weight_out_nc and groups.
            ### if in_nc = groups, slice the shape of bias by weight_out_nc.
            if groups != in_nc:
                weight_out_nc = weight_out_nc * groups
312 313 314 315
            if weight_out_nc >= self.bias.shape[0]:
                bias = self.bias
            else:
                bias = self.bias[:weight_out_nc]
C
ceci3 已提交
316
        else:
C
ceci3 已提交
317
            bias = self.bias
C
Chang Xu 已提交
318
        self.cur_config['prune_dim'] = list(weight.shape)
C
Chang Xu 已提交
319
        self.cur_config['prune_group'] = groups
C
ceci3 已提交
320 321 322 323 324 325 326
        out = F.conv2d(
            input,
            weight,
            bias=bias,
            stride=self._stride,
            padding=padding,
            dilation=self._dilation,
C
ceci3 已提交
327
            groups=groups,
C
ceci3 已提交
328 329
            data_format=self._data_format)
        return out
C
ceci3 已提交
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352


class SuperGroupConv2D(SuperConv2D):
    def get_groups_in_out_nc(self, in_nc, out_nc):
        ### groups convolution
        ### conv: weight: (Cout, Cin/G, Kh, Kw)
        groups = self._groups
        in_nc = int(in_nc // groups)
        return groups, in_nc, out_nc


class SuperDepthwiseConv2D(SuperConv2D):
    ### depthwise convolution
    def get_groups_in_out_nc(self, in_nc, out_nc):
        if in_nc != out_nc:
            _logger.debug(
                "input channel and output channel in depthwise conv is different, change output channel to input channel! origin channel:(in_nc {}, out_nc {}): ".
                format(in_nc, out_nc))
        groups = in_nc
        out_nc = in_nc
        return groups, in_nc, out_nc


C
ceci3 已提交
353
class SuperConv2DTranspose(nn.Conv2DTranspose):
C
ceci3 已提交
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
    """
    This interface is used to construct a callable object of the ``SuperConv2DTranspose`` 
    class.
    Note: the channel in config need to less than first defined.
    The super convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input and output
    are in NCHW format. Where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
    Filter's shape is [MCHW] , where M is the number of input feature map,
    C is the number of output feature map, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
    The details of convolution transpose layer, please refer to the following explanation and references
    `conv2dtranspose <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_ .
    For each input :math:`X`, the equation is:
    .. math::
W
whs 已提交
373
        Out = \\sigma (W \\ast X + b)
C
ceci3 已提交
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
    Where:
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
    Example:
        - Input:
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
        - Output:
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
        Where
        .. math::
W
whs 已提交
389 390 391 392
           H^\\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} &\\in [ H^\\prime_{out}, H^\\prime_{out} + strides[0] ) \\\\
           W_{out} &\\in [ W^\\prime_{out}, W^\\prime_{out} + strides[1] )
C
ceci3 已提交
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
    Parameters:
        num_channels(int): The number of channels in the input image.
        num_filters(int): The number of the filter. It is as same as the output
            feature map.
        filter_size(int or tuple): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        candidate_config(dict, optional): Dictionary descripts candidate config of this layer,
            such as {'kernel_size': (3, 5, 7), 'channel': (4, 6, 8)}, means the kernel size of 
            this layer can be choose from (3, 5, 7), the key of candidate_config
            only can be 'kernel_size', 'channel' and 'expand_ratio', 'channel' and 'expand_ratio'
            CANNOT be set at the same time. Default: None.
        transform_kernel(bool, optional): Whether to use transform matrix to transform a large filter
            to a small filter. Default: False.
        output_size(int or tuple, optional): The output image size. If output size is a
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above. Default: None.
        padding(int or tuple, optional): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: 0.
        stride(int or tuple, optional): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: 1.
        dilation(int or tuple, optional): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: 1.
        groups(int, optional): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            Default: None.
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
        **bias** (Parameter or None): the learnable bias of this layer.
    Returns:
        None
    Examples:
       .. code-block:: python
C
ceci3 已提交
448
          import paddle
C
ceci3 已提交
449
          import numpy as np
C
ceci3 已提交
450 451 452
          from paddleslim.nas.ofa.layers import SuperConv2DTranspose
          data = np.random.random((3, 32, 32, 5)).astype('float32')
          config = {'channel': 5}
C
ceci3 已提交
453 454
          super_convtranspose = SuperConv2DTranspose(32, 10, 3)
          ret = super_convtranspose(paddle.to_tensor(data), config)
C
ceci3 已提交
455 456 457
    """

    def __init__(self,
C
ceci3 已提交
458 459 460
                 in_channels,
                 out_channels,
                 kernel_size,
C
ceci3 已提交
461 462 463 464
                 candidate_config={},
                 transform_kernel=False,
                 stride=1,
                 padding=0,
C
ceci3 已提交
465 466 467 468
                 output_padding=0,
                 dilation=1,
                 groups=1,
                 weight_attr=None,
C
ceci3 已提交
469
                 bias_attr=None,
C
ceci3 已提交
470
                 data_format="NCHW"):
C
ceci3 已提交
471
        super(SuperConv2DTranspose, self).__init__(
C
ceci3 已提交
472 473 474 475 476 477 478 479 480 481 482 483
            in_channels,
            out_channels,
            kernel_size,
            stride=stride,
            padding=padding,
            dilation=dilation,
            output_padding=output_padding,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format)

C
ceci3 已提交
484
        self.candidate_config = candidate_config
C
Chang Xu 已提交
485
        self.cur_config = None
C
ceci3 已提交
486 487 488 489 490 491 492 493 494
        if len(self.candidate_config.items()) != 0:
            for k, v in candidate_config.items():
                candidate_config[k] = list(set(v))
        self.ks_set = candidate_config[
            'kernel_size'] if 'kernel_size' in candidate_config else None
        self.expand_ratio = candidate_config[
            'expand_ratio'] if 'expand_ratio' in candidate_config else None
        self.channel = candidate_config[
            'channel'] if 'channel' in candidate_config else None
C
ceci3 已提交
495
        self.base_channel = self._out_channels
C
ceci3 已提交
496
        if self.expand_ratio:
C
ceci3 已提交
497
            self.base_channel = int(self._out_channels / max(self.expand_ratio))
C
ceci3 已提交
498 499 500 501 502 503 504 505 506 507 508 509 510

        self.transform_kernel = transform_kernel
        if self.ks_set != None:
            self.ks_set.sort()
        if self.transform_kernel != False:
            scale_param = dict()
            ### create parameter to transform kernel
            for i in range(len(self.ks_set) - 1):
                ks_small = self.ks_set[i]
                ks_large = self.ks_set[i + 1]
                param_name = '%dto%d_matrix' % (ks_large, ks_small)
                ks_t = ks_small**2
                scale_param[param_name] = self.create_parameter(
C
ceci3 已提交
511
                    attr=paddle.ParamAttr(
C
ceci3 已提交
512
                        name=self._full_name + param_name,
C
ceci3 已提交
513
                        initializer=nn.initializer.Assign(np.eye(ks_t))),
C
ceci3 已提交
514 515 516 517 518 519 520
                    shape=(ks_t, ks_t),
                    dtype=self._dtype)

            for name, param in scale_param.items():
                setattr(self, name, param)

    def get_active_filter(self, in_nc, out_nc, kernel_size):
C
ceci3 已提交
521
        start, end = compute_start_end(self._kernel_size[0], kernel_size)
C
ceci3 已提交
522
        filters = self.weight[:in_nc, :out_nc, start:end, start:end]
C
ceci3 已提交
523
        if self.transform_kernel != False and kernel_size < self._kernel_size[
C
ceci3 已提交
524 525 526 527 528 529 530 531 532
                0]:
            start_filter = self.weight[:in_nc, :out_nc, :, :]
            for i in range(len(self.ks_set) - 1, 0, -1):
                src_ks = self.ks_set[i]
                if src_ks <= kernel_size:
                    break
                target_ks = self.ks_set[i - 1]
                start, end = compute_start_end(src_ks, target_ks)
                _input_filter = start_filter[:, :, start:end, start:end]
C
ceci3 已提交
533
                _input_filter = paddle.reshape(
C
ceci3 已提交
534 535 536
                    _input_filter,
                    shape=[(_input_filter.shape[0] * _input_filter.shape[1]),
                           -1])
C
ceci3 已提交
537 538 539 540 541
                _input_filter = paddle.matmul(
                    _input_filter,
                    self.__getattr__('%dto%d_matrix' %
                                     (src_ks, target_ks)), False, False)
                _input_filter = paddle.reshape(
C
ceci3 已提交
542 543 544 545 546 547 548 549 550
                    _input_filter,
                    shape=[
                        filters.shape[0], filters.shape[1], target_ks, target_ks
                    ])
                start_filter = _input_filter
            filters = start_filter
        return filters

    def get_groups_in_out_nc(self, in_nc, out_nc):
C
ceci3 已提交
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
        if self._groups == 1:
            ### standard conv
            return self._groups, in_nc, out_nc
        elif self._groups == self._in_channels:
            ### depthwise convolution
            if in_nc != out_nc:
                _logger.debug(
                    "input channel and output channel in depthwise conv is different, change output channel to input channel! origin channel:(in_nc {}, out_nc {}): ".
                    format(in_nc, out_nc))
            groups = in_nc
            out_nc = in_nc
            return groups, in_nc, out_nc
        else:
            ### groups convolution
            ### groups conv transpose: weight: (Cin, Cout/G, Kh, Kw)
            groups = self._groups
            out_nc = int(out_nc // groups)
            return groups, in_nc, out_nc

    def forward(self,
                input,
                output_size=None,
                kernel_size=None,
                expand_ratio=None,
                channel=None):
        """
        Parameters:
            input(Tensor): input tensor.
            output_size(int, optional): the size of the feature map after transpose convolution. Default: None.
            kernel_size(int, optional): the kernel size of the filter in actual calculation. Default: None.
            expand_ratio(int|float, optional): the expansion ratio of filter's channel number in actual calculation. Default: None.
            channel(int, optional): the expansion ratio of filter's channel number in actual calculation. Default: None.
        """
C
ceci3 已提交
584 585 586 587 588
        self.cur_config = {
            'kernel_size': kernel_size,
            'expand_ratio': expand_ratio,
            'channel': channel
        }
C
ceci3 已提交
589 590 591 592 593 594 595 596 597
        in_nc = int(input.shape[1])
        assert (
            expand_ratio == None or channel == None
        ), "expand_ratio and channel CANNOT be NOT None at the same time."
        if expand_ratio != None:
            out_nc = int(expand_ratio * self.base_channel)
        elif channel != None:
            out_nc = int(channel)
        else:
C
ceci3 已提交
598
            out_nc = self._out_channels
C
ceci3 已提交
599

C
ceci3 已提交
600
        ks = int(self._kernel_size[0]) if kernel_size == None else int(
C
ceci3 已提交
601 602 603 604 605 606
            kernel_size)

        groups, weight_in_nc, weight_out_nc = self.get_groups_in_out_nc(in_nc,
                                                                        out_nc)

        weight = self.get_active_filter(weight_in_nc, weight_out_nc, ks)
C
ceci3 已提交
607

C
ceci3 已提交
608 609 610 611
        if kernel_size != None or 'kernel_size' in self.candidate_config.keys():
            padding = convert_to_list(get_same_padding(ks), 2)
        else:
            padding = self._padding
C
ceci3 已提交
612

C
ceci3 已提交
613 614 615 616 617
        if output_size is None:
            output_padding = self.output_padding
        else:
            output_padding = 0

C
ceci3 已提交
618
        if self.bias is not None:
C
ceci3 已提交
619 620 621
            if groups != in_nc:
                weight_out_nc = weight_out_nc * groups
            bias = self.bias[:weight_out_nc]
C
ceci3 已提交
622
        else:
C
ceci3 已提交
623
            bias = self.bias
C
Chang Xu 已提交
624
        self.cur_config['prune_dim'] = list(weight.shape)
C
Chang Xu 已提交
625
        self.cur_config['prune_group'] = groups
C
ceci3 已提交
626 627 628 629 630 631 632 633
        out = F.conv2d_transpose(
            input,
            weight,
            bias=bias,
            padding=padding,
            output_padding=output_padding,
            stride=self._stride,
            dilation=self._dilation,
C
ceci3 已提交
634
            groups=groups,
C
ceci3 已提交
635 636 637
            output_size=output_size,
            data_format=self._data_format)
        return out
C
ceci3 已提交
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660


class SuperGroupConv2DTranspose(SuperConv2DTranspose):
    def get_groups_in_out_nc(self, in_nc, out_nc):
        ### groups convolution
        ### groups conv transpose: weight: (Cin, Cout/G, Kh, Kw)
        groups = self._groups
        out_nc = int(out_nc // groups)
        return groups, in_nc, out_nc


class SuperDepthwiseConv2DTranspose(SuperConv2DTranspose):
    def get_groups_in_out_nc(self, in_nc, out_nc):
        if in_nc != out_nc:
            _logger.debug(
                "input channel and output channel in depthwise conv transpose is different, change output channel to input channel! origin channel:(in_nc {}, out_nc {}): ".
                format(in_nc, out_nc))
        groups = in_nc
        out_nc = in_nc
        return groups, in_nc, out_nc


### NOTE: only search channel, write for GAN-compression, maybe change to SuperDepthwiseConv and SuperConv after.
C
ceci3 已提交
661
class SuperSeparableConv2D(nn.Layer):
C
ceci3 已提交
662 663 664 665 666 667 668 669
    """
    This interface is used to construct a callable object of the ``SuperSeparableConv2D``
    class.
    The difference between ```SuperSeparableConv2D``` and ```SeparableConv2D``` is: 
    ```SuperSeparableConv2D``` need to feed a config dictionary with the format of 
    {'channel', num_of_channel} represents the channels of the first conv's outputs and
    the second conv's inputs, used to change the first dimension of weight and bias, 
    only train the first channels of the weight and bias.
C
ceci3 已提交
670 671
    The architecture of super separable convolution2D op is [Conv2D, norm layer(may be BatchNorm2D
    or InstanceNorm2D), Conv2D]. The first conv is depthwise conv, the filter number is input channel
C
ceci3 已提交
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
    multiply scale_factor, the group is equal to the number of input channel. The second conv
    is standard conv, which filter size and stride size are 1. 
    Parameters:
        num_channels(int): The number of channels in the input image.
        num_filters(int): The number of the second conv's filter. It is as same as the output
            feature map.
        filter_size(int or tuple): The first conv's filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        padding(int or tuple, optional): The first conv's padding size. If padding is a tuple, 
            it must contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: 0.
        stride(int or tuple, optional): The first conv's stride size. If stride is a tuple,
            it must contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: 1.
        dilation(int or tuple, optional): The first conv's dilation size. If dilation is a tuple, 
            it must contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: 1.
C
ceci3 已提交
690
        norm_layer(class): The normalization layer between two convolution. Default: InstanceNorm2D.
C
ceci3 已提交
691 692 693 694 695 696 697 698 699 700 701
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of convolution.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, convolution
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        scale_factor(float): The scale factor of the first conv's output channel. Default: 1.
    Returns:
        None
    """

    def __init__(self,
C
ceci3 已提交
702 703 704
                 in_channels,
                 out_channels,
                 kernel_size,
C
ceci3 已提交
705 706 707 708
                 candidate_config={},
                 stride=1,
                 padding=0,
                 dilation=1,
C
ceci3 已提交
709
                 norm_layer=nn.InstanceNorm2D,
C
ceci3 已提交
710
                 bias_attr=None,
C
ceci3 已提交
711
                 scale_factor=1):
C
ceci3 已提交
712
        super(SuperSeparableConv2D, self).__init__()
C
ceci3 已提交
713 714 715 716 717
        self.conv = nn.LayerList([
            nn.Conv2D(
                in_channels=in_channels,
                out_channels=in_channels * scale_factor,
                kernel_size=kernel_size,
C
ceci3 已提交
718 719
                stride=stride,
                padding=padding,
C
ceci3 已提交
720
                groups=in_channels,
C
ceci3 已提交
721 722 723
                bias_attr=bias_attr)
        ])

C
ceci3 已提交
724
        self.conv.extend([norm_layer(in_channels * scale_factor)])
C
ceci3 已提交
725 726

        self.conv.extend([
C
ceci3 已提交
727 728 729 730
            nn.Conv2D(
                in_channels=in_channels * scale_factor,
                out_channels=out_channels,
                kernel_size=1,
C
ceci3 已提交
731 732 733 734 735
                stride=1,
                bias_attr=bias_attr)
        ])

        self.candidate_config = candidate_config
C
Chang Xu 已提交
736
        self.cur_config = None
C
ceci3 已提交
737 738
        self.expand_ratio = candidate_config[
            'expand_ratio'] if 'expand_ratio' in candidate_config else None
C
ceci3 已提交
739
        self.base_output_dim = self.conv[0]._out_channels
C
ceci3 已提交
740
        if self.expand_ratio != None:
C
ceci3 已提交
741
            self.base_output_dim = int(self.conv[0]._out_channels /
C
ceci3 已提交
742
                                       max(self.expand_ratio))
C
ceci3 已提交
743 744

    def forward(self, input, expand_ratio=None, channel=None):
C
ceci3 已提交
745 746 747 748 749 750
        """
        Parameters:
            input(Tensor): input tensor.
            expand_ratio(int|float, optional): the expansion ratio of filter's channel number in actual calculation. Default: None.
            channel(int, optional): the expansion ratio of filter's channel number in actual calculation. Default: None.
        """
C
ceci3 已提交
751
        self.cur_config = {'expand_ratio': expand_ratio, 'channel': channel}
C
ceci3 已提交
752 753 754 755 756 757 758 759 760
        in_nc = int(input.shape[1])
        assert (
            expand_ratio == None or channel == None
        ), "expand_ratio and channel CANNOT be NOT None at the same time."
        if expand_ratio != None:
            out_nc = int(expand_ratio * self.base_output_dim)
        elif channel != None:
            out_nc = int(channel)
        else:
C
ceci3 已提交
761
            out_nc = self.conv[0]._out_channels
C
ceci3 已提交
762 763 764 765 766 767

        weight = self.conv[0].weight[:in_nc]
        ###  conv1
        if self.conv[0].bias is not None:
            bias = self.conv[0].bias[:in_nc]
        else:
C
ceci3 已提交
768 769 770 771 772 773 774 775 776 777 778
            bias = self.conv[0].bias

        conv0_out = F.conv2d(
            input,
            weight,
            bias,
            stride=self.conv[0]._stride,
            padding=self.conv[0]._padding,
            dilation=self.conv[0]._dilation,
            groups=in_nc,
            data_format=self.conv[0]._data_format)
C
ceci3 已提交
779 780 781 782 783 784 785 786

        norm_out = self.conv[1](conv0_out)

        weight = self.conv[2].weight[:out_nc, :in_nc, :, :]

        if self.conv[2].bias is not None:
            bias = self.conv[2].bias[:out_nc]
        else:
C
ceci3 已提交
787
            bias = self.conv[2].bias
C
Chang Xu 已提交
788
        self.cur_config['prune_dim'] = list(weight.shape)
C
ceci3 已提交
789 790 791 792 793 794 795 796 797
        conv1_out = F.conv2d(
            norm_out,
            weight,
            bias,
            stride=self.conv[2]._stride,
            padding=self.conv[2]._padding,
            dilation=self.conv[2]._dilation,
            groups=self.conv[2]._groups,
            data_format=self.conv[2]._data_format)
C
ceci3 已提交
798 799 800
        return conv1_out


C
ceci3 已提交
801
class SuperLinear(nn.Linear):
C
ceci3 已提交
802
    """
C
ceci3 已提交
803 804 805 806 807 808 809
    Super Fully-connected linear transformation layer. 
    
    For each input :math:`X` , the equation is:
    .. math::
        Out = XW + b
    where :math:`W` is the weight and :math:`b` is the bias.
    Linear layer takes only one multi-dimensional tensor as input with the
W
whs 已提交
810
    shape :math:`[batch\\_size, *, in\\_features]` , where :math:`*` means any
C
ceci3 已提交
811
    number of additional dimensions. It multiplies input tensor with the weight
W
whs 已提交
812 813 814 815
    (a 2-D tensor of shape :math:`[in\\_features, out\\_features]` ) and produces
    an output tensor of shape :math:`[batch\\_size, *, out\\_features]` .
    If :math:`bias\\_attr` is not False, the bias (a 1-D tensor of
    shape :math:`[out\\_features]` ) will be created and added to the output.
C
ceci3 已提交
816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
    Parameters:
        in_features (int): The number of input units.
        out_features (int): The number of output units.
        candidate_config(dict, optional): Dictionary descripts candidate config of this layer,
            such as {'channel': (4, 6, 8)}, the key of candidate_config
            only can be 'channel' and 'expand_ratio', 'channel' and 'expand_ratio'
            CANNOT be set at the same time. Default: None.
        weight_attr (ParamAttr, optional): The attribute for the learnable
            weight of this layer. The default value is None and the weight will be
            initialized to zero. For detailed information, please refer to
            paddle.ParamAttr.
        bias_attr (ParamAttr|bool, optional): The attribute for the learnable bias
            of this layer. If it is set to False, no bias will be added to the output.
            If it is set to None or one kind of ParamAttr, a bias parameter will
            be created according to ParamAttr. For detailed information, please refer
            to paddle.ParamAttr. The default value is None and the bias will be
            initialized to zero.
        name (str, optional): Normally there is no need for user to set this parameter.
            For detailed information, please refer to :ref:`api_guide_Name` .
    Attribute:
        **weight** (Parameter): the learnable weight of this layer.
        **bias** (Parameter): the learnable bias of this layer.
    Shape:
W
whs 已提交
839 840
        - input: Multi-dimentional tensor with shape :math:`[batch\\_size, *, in\\_features]` .
        - output: Multi-dimentional tensor with shape :math:`[batch\\_size, *, out\\_features]` .
C
ceci3 已提交
841 842 843 844 845 846
    Examples:
        .. code-block:: python
          import numpy as np
          import paddle
          from paddleslim.nas.ofa.layers import SuperLinear
          
C
ceci3 已提交
847
          data = np.random.uniform(-1, 1, [32, 64]).astype('float32')
C
ceci3 已提交
848
          config = {'channel': 16}
C
ceci3 已提交
849 850
          linear = SuperLinear(64, 64)
          data = paddle.to_tensor(data)
C
ceci3 已提交
851
          res = linear(data, **config)
C
ceci3 已提交
852 853 854
    """

    def __init__(self,
C
ceci3 已提交
855 856
                 in_features,
                 out_features,
C
ceci3 已提交
857
                 candidate_config={},
C
ceci3 已提交
858
                 weight_attr=None,
C
ceci3 已提交
859
                 bias_attr=None,
C
ceci3 已提交
860 861 862 863
                 name=None):
        super(SuperLinear, self).__init__(in_features, out_features,
                                          weight_attr, bias_attr, name)
        self._weight_attr = weight_attr
C
ceci3 已提交
864
        self._bias_attr = bias_attr
C
ceci3 已提交
865 866
        self._in_features = in_features
        self._out_features = out_features
C
ceci3 已提交
867
        self.candidate_config = candidate_config
C
Chang Xu 已提交
868
        self.cur_config = None
C
ceci3 已提交
869 870
        self.expand_ratio = candidate_config[
            'expand_ratio'] if 'expand_ratio' in candidate_config else None
C
ceci3 已提交
871
        self.base_output_dim = self._out_features
C
ceci3 已提交
872
        if self.expand_ratio != None:
C
ceci3 已提交
873 874
            self.base_output_dim = int(self._out_features /
                                       max(self.expand_ratio))
C
ceci3 已提交
875 876

    def forward(self, input, expand_ratio=None, channel=None):
C
ceci3 已提交
877 878 879 880 881 882
        """
        Parameters:
            input(Tensor): input tensor.
            expand_ratio(int|float, optional): the expansion ratio of filter's channel number in actual calculation. Default: None.
            channel(int, optional): the expansion ratio of filter's channel number in actual calculation. Default: None.
        """
C
ceci3 已提交
883
        self.cur_config = {'expand_ratio': expand_ratio, 'channel': channel}
C
ceci3 已提交
884
        ### weight: (Cin, Cout)
C
ceci3 已提交
885
        in_nc = int(input.shape[-1])
C
ceci3 已提交
886 887 888 889 890 891 892 893
        assert (
            expand_ratio == None or channel == None
        ), "expand_ratio and channel CANNOT be NOT None at the same time."
        if expand_ratio != None:
            out_nc = int(expand_ratio * self.base_output_dim)
        elif channel != None:
            out_nc = int(channel)
        else:
C
ceci3 已提交
894
            out_nc = self._out_features
895 896 897 898
        if self.weight.shape[0] <= in_nc and self.weight.shape[1] <= out_nc:
            weight = self.weight
        else:
            weight = self.weight[:in_nc, :out_nc]
C
ceci3 已提交
899
        if self._bias_attr != False:
900 901 902 903
            if self.bias.shape[0] <= out_nc:
                bias = self.bias
            else:
                bias = self.bias[:out_nc]
C
ceci3 已提交
904
        else:
C
ceci3 已提交
905
            bias = self.bias
C
Chang Xu 已提交
906
        self.cur_config['prune_dim'] = list(weight.shape)
C
ceci3 已提交
907 908
        out = F.linear(x=input, weight=weight, bias=bias, name=self.name)
        return out
C
ceci3 已提交
909 910


C
ceci3 已提交
911
class SuperBatchNorm2D(nn.BatchNorm2D):
C
ceci3 已提交
912
    """
C
ceci3 已提交
913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
    This interface is used to construct a callable object of the ``SuperBatchNorm2D`` class. 
    Parameters:
        num_features(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
            of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
            will create ParamAttr as weight_attr. If it is set to Fasle, the weight is not learnable.
            If the Initializer of the weight_attr is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of batch_norm.
            If it is set to None or one attribute of ParamAttr, batch_norm
            will create ParamAttr as bias_attr. If it is set to Fasle, the weight is not learnable.
            If the Initializer of the bias_attr is not set, the bias is initialized zero. Default: None.
        data_format(str, optional): Specify the input data format, the data format can be "NCHW" or "NHWC". Default: NCHW.
        name(str, optional): Name for the BatchNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..
    Examples:
       .. code-block:: python
         import paddle
         import numpy as np
         from paddleslim.nas.ofa.layers import SuperBatchNorm2D
         
         np.random.seed(123)
         x_data = np.random.random(size=(2, 5, 2, 3)).astype('float32')
         x = paddle.to_tensor(x_data)
         batch_norm = SuperBatchNorm2D(5)
         batch_norm_out = batch_norm(x)
C
ceci3 已提交
939 940 941
    """

    def __init__(self,
C
ceci3 已提交
942
                 num_features,
C
ceci3 已提交
943 944
                 momentum=0.9,
                 epsilon=1e-05,
C
ceci3 已提交
945
                 weight_attr=None,
C
ceci3 已提交
946
                 bias_attr=None,
C
ceci3 已提交
947
                 data_format='NCHW',
C
ceci3 已提交
948
                 use_global_stats=None,
C
ceci3 已提交
949
                 name=None):
C
ceci3 已提交
950 951 952
        super(SuperBatchNorm2D, self).__init__(
            num_features, momentum, epsilon, weight_attr, bias_attr,
            data_format, use_global_stats, name)
C
Chang Xu 已提交
953
        self.cur_config = None
C
ceci3 已提交
954 955

    def forward(self, input):
C
ceci3 已提交
956 957
        self._check_data_format(self._data_format)
        self._check_input_dim(input)
C
ceci3 已提交
958 959
        feature_dim = int(input.shape[1])

960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975
        if self.weight.shape[0] <= feature_dim:
            weight = self.weight
        else:
            weight = self.weight[:feature_dim]
        if self.bias.shape[0] <= feature_dim:
            bias = self.bias
        else:
            bias = self.bias[:feature_dim]
        if self._mean.shape[0] <= feature_dim:
            mean = self._mean
        else:
            mean = self._mean[:feature_dim]
        if self._variance.shape[0] <= feature_dim:
            variance = self._variance
        else:
            variance = self._variance[:feature_dim]
C
ceci3 已提交
976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992

        mean_out = self._mean
        variance_out = self._variance
        mean_out_tmp = mean
        variance_out_tmp = variance

        if self._use_global_stats == None:
            self._use_global_stats = not self.training
            trainable_statistics = False
        else:
            trainable_statistics = not self._use_global_stats

        attrs = ("momentum", self._momentum, "epsilon", self._epsilon,
                 "is_test", not self.training, "data_layout", self._data_format,
                 "use_mkldnn", False, "fuse_with_relu", False,
                 "use_global_stats", self._use_global_stats,
                 "trainable_statistics", trainable_statistics)
993 994

        if in_dygraph_mode():
C
Chang Xu 已提交
995
            if feature_dim != self._mean.shape[0]:
C
Chang Xu 已提交
996
                batch_norm_out, t1, t2, t3, t4, _ = _C_ops.batch_norm(
997 998 999
                    input, mean, variance, weight, bias, not self.training,
                    self._momentum, self._epsilon, self._data_format,
                    self._use_global_stats, trainable_statistics)
C
Chang Xu 已提交
1000 1001 1002 1003
                self._mean[:feature_dim].set_value(mean)
                self._variance[:feature_dim].set_value(variance)
                mean_out[:feature_dim].set_value(mean_out_tmp)
                variance_out[:feature_dim].set_value(variance_out_tmp)
1004
                return batch_norm_out
C
Chang Xu 已提交
1005
            else:
C
Chang Xu 已提交
1006
                batch_norm_out, t1, t2, t3, t4, _ = _C_ops.batch_norm(
1007 1008 1009
                    input, mean, variance, weight, bias, not self.training,
                    self._momentum, self._epsilon, self._data_format,
                    self._use_global_stats, trainable_statistics)
1010 1011 1012 1013
                return batch_norm_out

        elif _in_legacy_dygraph():
            if feature_dim != self._mean.shape[0]:
C
Chang Xu 已提交
1014
                batch_norm_out, t1, t2, t3, t4, _ = _legacy_C_ops.batch_norm(
1015 1016 1017 1018 1019 1020 1021 1022
                    input, weight, bias, mean, variance, None, mean_out_tmp,
                    variance_out_tmp, *attrs)
                self._mean[:feature_dim].set_value(mean)
                self._variance[:feature_dim].set_value(variance)
                mean_out[:feature_dim].set_value(mean_out_tmp)
                variance_out[:feature_dim].set_value(variance_out_tmp)
                return batch_norm_out
            else:
C
Chang Xu 已提交
1023
                batch_norm_out, t1, t2, t3, t4, _ = _legacy_C_ops.batch_norm(
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
                    input, weight, bias, self._mean, self._variance, None,
                    mean_out, variance_out, *attrs)
                return batch_norm_out

        check_variable_and_dtype(input, 'input',
                                 ['float16', 'float32', 'float64'], 'BatchNorm')

        # for static need dict
        attrs = {
            "momentum": self._momentum,
            "epsilon": self._epsilon,
            "is_test": not self.training,
            "data_layout": self._data_format,
            "use_mkldnn": False,
            "fuse_with_relu": False,
            "use_global_stats": self._use_global_stats,
            "trainable_statistics": trainable_statistics,
        }

        inputs = {
            "X": [input],
            "Scale": [weight],
            "Bias": [bias],
            "Mean": [mean],
            "Variance": [variance]
        }
C
ceci3 已提交
1050

1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
        helper = LayerObjectHelper('batch_norm')

        param_dtype = input.dtype if input.dtype != 'float16' else 'float32'
        saved_mean = helper.create_variable_for_type_inference(
            dtype=param_dtype, stop_gradient=True)
        saved_variance = helper.create_variable_for_type_inference(
            dtype=param_dtype, stop_gradient=True)
        batch_norm_out = helper.create_variable_for_type_inference(input.dtype)

        outputs = {
            "Y": [batch_norm_out],
            "MeanOut": [mean],
            "VarianceOut": [variance],
            "SavedMean": [saved_mean],
            "SavedVariance": [saved_variance]
        }

        if self.training or trainable_statistics:
            # reserve_space is only used for training.
            reserve_space = helper.create_variable_for_type_inference(
                dtype=input.dtype, stop_gradient=True)
            outputs["ReserveSpace"] = [reserve_space]

        helper.append_op(
            type="batch_norm", inputs=inputs, outputs=outputs, attrs=attrs)
C
Chang Xu 已提交
1076
        self.cur_config = {'prune_dim': feature_dim}
1077
        return batch_norm_out
C
ceci3 已提交
1078 1079


C
Chang Xu 已提交
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
class SuperSyncBatchNorm(nn.SyncBatchNorm):
    def __init__(self,
                 num_features,
                 momentum=0.9,
                 epsilon=1e-05,
                 weight_attr=None,
                 bias_attr=None,
                 data_format='NCHW',
                 name=None):
        super(SuperSyncBatchNorm,
              self).__init__(num_features, momentum, epsilon, weight_attr,
                             bias_attr, data_format, name)
C
Chang Xu 已提交
1092
        self.cur_config = None
C
Chang Xu 已提交
1093 1094

    def forward(self, input):
C
ceci3 已提交
1095
        self._check_data_format()
C
Chang Xu 已提交
1096 1097 1098 1099 1100 1101 1102
        feature_dim = int(input.shape[1])

        weight = self.weight[:feature_dim]
        bias = self.bias[:feature_dim]
        mean = self._mean[:feature_dim]
        variance = self._variance[:feature_dim]

C
ceci3 已提交
1103 1104 1105 1106
        mean_out = self._mean
        variance_out = self._variance
        mean_out_tmp = mean
        variance_out_tmp = variance
C
Chang Xu 已提交
1107
        self.cur_config = {'prune_dim': feature_dim}
C
Chang Xu 已提交
1108 1109 1110 1111 1112 1113

        attrs = ("momentum", self._momentum, "epsilon", self._epsilon,
                 "is_test", not self.training, "data_layout", self._data_format,
                 "use_mkldnn", False, "fuse_with_relu", False,
                 "use_global_stats", False, 'trainable_statistics', False)

1114 1115
        if _non_static_mode():
            if feature_dim != self._mean.shape[0]:
C
Chang Xu 已提交
1116
                sync_batch_norm_out, _, _, _, _, _ = _legacy_C_ops.sync_batch_norm(
1117 1118 1119 1120 1121 1122 1123 1124
                    input, weight, bias, self._mean, self._variance, mean_out,
                    variance_out, *attrs)

                self._mean[:feature_dim].set_value(mean)
                self._variance[:feature_dim].set_value(variance)
                mean_out[:feature_dim].set_value(mean_out_tmp)
                variance_out[:feature_dim].set_value(variance_out_tmp)
            else:
C
Chang Xu 已提交
1125
                sync_batch_norm_out, _, _, _, _, _ = _legacy_C_ops.sync_batch_norm(
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
                    input, weight, bias, self._mean, self._variance, mean_out,
                    variance_out, *attrs)

            return sync_batch_norm_out

        check_variable_and_dtype(
            input, 'input', ['float16', 'float32', 'float64'], 'SyncBatchNorm')

        attrs = {
            "momentum": self._momentum,
            "epsilon": self._epsilon,
            "is_test": not self.training,
            "data_layout": self._data_format,
            "use_mkldnn": False,
            "fuse_with_relu": False,
            "use_global_stats": False,
            "trainable_statistics": False,
        }

        inputs = {
            "X": [input],
            "Scale": [weight],
            "Bias": [bias],
            "Mean": [self._mean],
            "Variance": [self._variance]
        }

        helper = LayerObjectHelper('sync_batch_norm')

        saved_mean = helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        saved_variance = helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        sync_batch_norm_out = helper.create_variable_for_type_inference(
            self._dtype)

        outputs = {
            "Y": [sync_batch_norm_out],
            "MeanOut": [mean_out],
            "VarianceOut": [variance_out],
            "SavedMean": [saved_mean],
            "SavedVariance": [saved_variance]
        }

        helper.append_op(
            type="sync_batch_norm", inputs=inputs, outputs=outputs, attrs=attrs)
C
Chang Xu 已提交
1172 1173 1174
        return sync_batch_norm_out


C
ceci3 已提交
1175
class SuperInstanceNorm2D(nn.InstanceNorm2D):
C
ceci3 已提交
1176
    """
C
ceci3 已提交
1177
    This interface is used to construct a callable object of the ``SuperInstanceNorm2D`` class. 
C
ceci3 已提交
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
    Parameters:
        num_features(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
            of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
            will create ParamAttr as weight_attr. If it is set to Fasle, the weight is not learnable.
            If the Initializer of the weight_attr is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of batch_norm.
            If it is set to None or one attribute of ParamAttr, batch_norm
            will create ParamAttr as bias_attr. If it is set to Fasle, the weight is not learnable.
            If the Initializer of the bias_attr is not set, the bias is initialized zero. Default: None.
        data_format(str, optional): Specify the input data format, the data format can be "NCHW" or "NHWC". Default: NCHW.
        name(str, optional): Name for the BatchNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..
    Examples:
       .. code-block:: python
         import paddle
         import numpy as np
         from paddleslim.nas.ofa.layers import SuperInstanceNorm2D
         
         np.random.seed(123)
         x_data = np.random.random(size=(2, 5, 2, 3)).astype('float32')
         x = paddle.to_tensor(x_data)
         instance_norm = SuperInstanceNorm2D(5)
         out = instance_norm(x)
C
ceci3 已提交
1203 1204 1205
    """

    def __init__(self,
C
ceci3 已提交
1206
                 num_features,
C
ceci3 已提交
1207
                 epsilon=1e-05,
C
ceci3 已提交
1208 1209
                 momentum=0.9,
                 weight_attr=None,
C
ceci3 已提交
1210
                 bias_attr=None,
C
ceci3 已提交
1211 1212 1213 1214 1215
                 data_format='NCHW',
                 name=None):
        super(SuperInstanceNorm2D, self).__init__(num_features, epsilon,
                                                  momentum, weight_attr,
                                                  bias_attr, data_format, name)
C
Chang Xu 已提交
1216
        self.cur_config = None
C
ceci3 已提交
1217 1218

    def forward(self, input):
C
ceci3 已提交
1219
        self._check_input_dim(input)
C
ceci3 已提交
1220 1221

        feature_dim = int(input.shape[1])
C
ceci3 已提交
1222
        if self._weight_attr == False and self._bias_attr == False:
C
ceci3 已提交
1223 1224 1225 1226 1227
            scale = None
            bias = None
        else:
            scale = self.scale[:feature_dim]
            bias = self.bias[:feature_dim]
C
Chang Xu 已提交
1228
        self.cur_config = {'prune_dim': feature_dim}
C
ceci3 已提交
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
        return F.instance_norm(input, scale, bias, eps=self._epsilon)


class SuperLayerNorm(nn.LayerNorm):
    """
    This interface is used to construct a callable object of the ``SuperLayerNorm`` class.
    The difference between ```SuperLayerNorm``` and ```LayerNorm``` is: 
    the trained weight and bias in ```SuperLayerNorm``` can be changed according to the shape of input,
    only train the first channels of the weight and bias.
    Parameters:
        normalized_shape(int|list|tuple): Input shape from an expected input of
            size :math:`[*, normalized_shape[0], normalized_shape[1], ..., normalized_shape[-1]]`.
            If it is a single integer, this module will normalize over the last dimension
            which is expected to be of that specific size.
        epsilon(float, optional): The small value added to the variance to prevent
            division by zero. Default: 1e-05.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for the learnable
            gain :math:`g`. If False, weight is None. If is None, a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default: None.
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the learnable
            bias :math:`b`. If is False, bias is None. If is None, a default :code:`ParamAttr` would be added as bias. The
            :attr:`bias_attr` is initialized as 0 if it is added. Default: None.
        name(str, optional): Name for the LayerNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..
    Shape:
        - x: 2-D, 3-D, 4-D or 5-D tensor.
        - output: same shape as input x.
    Returns:
        None
    Examples:
        .. code-block:: python
          import paddle
          import numpy as np
          from paddleslim.nas.ofa.layers import SuperLayerNorm
          
          np.random.seed(123)
C
ceci3 已提交
1264
          x_data = np.random.random(size=(2, 3)).astype('float32')
C
ceci3 已提交
1265
          x = paddle.to_tensor(x_data)
C
ceci3 已提交
1266
          layer_norm = SuperLayerNorm(x_data.shape[1])
C
ceci3 已提交
1267 1268
          layer_norm_out = layer_norm(x)
    """
C
ceci3 已提交
1269 1270 1271 1272

    def __init__(self,
                 normalized_shape,
                 epsilon=1e-05,
C
ceci3 已提交
1273
                 weight_attr=None,
C
ceci3 已提交
1274
                 bias_attr=None,
C
ceci3 已提交
1275 1276 1277
                 name=None):
        super(SuperLayerNorm, self).__init__(normalized_shape, epsilon,
                                             weight_attr, bias_attr, name)
C
Chang Xu 已提交
1278
        self.cur_config = None
C
ceci3 已提交
1279 1280 1281

    def forward(self, input):
        ### TODO(ceci3): fix if normalized_shape is not a single number
C
ceci3 已提交
1282 1283 1284
        input_ndim = len(list(input.shape))
        normalized_ndim = len(self._normalized_shape)
        begin_norm_axis = input_ndim - normalized_ndim
C
ceci3 已提交
1285
        feature_dim = int(input.shape[-1])
C
ceci3 已提交
1286
        if self._weight_attr != False:
1287 1288 1289 1290
            if self.weight.shape[0] <= feature_dim:
                weight = self.weight
            else:
                weight = self.weight[:feature_dim]
C
ceci3 已提交
1291 1292 1293
        else:
            weight = None
        if self._bias_attr != False:
1294 1295 1296 1297
            if self.bias.shape[0] <= feature_dim:
                bias = self.bias
            else:
                bias = self.bias[:feature_dim]
C
ceci3 已提交
1298 1299
        else:
            bias = None
C
Chang Xu 已提交
1300 1301
        self.cur_config = {'prune_dim': feature_dim}

1302
        if in_dygraph_mode():
C
Chang Xu 已提交
1303 1304
            out, _, _ = _C_ops.layer_norm(input, weight, bias, self._epsilon,
                                          begin_norm_axis, False)
1305
        elif _in_legacy_dygraph():
C
Chang Xu 已提交
1306 1307 1308
            out, _, _ = _legacy_C_ops.layer_norm(
                input, weight, bias, 'epsilon', self._epsilon,
                'begin_norm_axis', begin_norm_axis)
1309
        else:
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
            check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                     'LayerNorm')

            inputs = dict()
            inputs['X'] = [input]
            if weight:
                inputs['Scale'] = [weight]
            if bias:
                inputs['Bias'] = [bias]
            attrs = {
                "epsilon": self._epsilon,
                "begin_norm_axis": begin_norm_axis
            }

            helper = LayerObjectHelper('layer_norm')

            dtype = input.dtype
            mean_out = helper.create_variable_for_type_inference(
                dtype=dtype, stop_gradient=True)
            variance_out = helper.create_variable_for_type_inference(
                dtype=dtype, stop_gradient=True)
            layer_norm_out = helper.create_variable_for_type_inference(dtype)

            helper.append_op(
                type="layer_norm",
                inputs=inputs,
                outputs={
                    "Y": layer_norm_out,
                    "Mean": mean_out,
                    "Variance": variance_out,
                },
                attrs={
                    "epsilon": self._epsilon,
                    "begin_norm_axis": begin_norm_axis
                })
            return layer_norm_out

C
ceci3 已提交
1347
        return out
C
ceci3 已提交
1348 1349


C
ceci3 已提交
1350 1351 1352 1353 1354 1355 1356 1357
class SuperEmbedding(nn.Embedding):
    """
    This interface is used to construct a callable object of the ``SuperEmbedding`` class.
    Parameters:
        num_embeddings (int): Just one element which indicate the size
            of the dictionary of embeddings.
        embedding_dim:  Just one element which indicate the size of each embedding vector respectively.
        padding_idx(int|long|None): padding_idx needs to be in the interval [-num_embeddings, num_embeddings).
W
whs 已提交
1358 1359 1360
            If :math:`padding\\_idx < 0`, the :math:`padding\\_idx` will automatically be converted
            to :math:`vocab\\_size + padding\\_idx` . It will output all-zero padding data whenever lookup
            encounters :math:`padding\\_idx` in id. And the padding data will not be updated while training.
C
ceci3 已提交
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
            If set None, it makes no effect to output. Default: None.
        sparse(bool): The flag indicating whether to use sparse update. This parameter only
            affects the performance of the backwards gradient update. It is recommended to set
            True because sparse update is faster. But some optimizer does not support sparse update,
            such as :ref:`api_optimizer_AdadeltaOptimizer` , :ref:`api_optimizer_AdamaxOptimizer` ,
            :ref:`api_optimizer_DecayedAdagradOptimizer` , :ref:`api_optimizer_FtrlOptimizer` ,
            :ref:`api_optimizer_LambOptimizer` and :ref:`api_optimizer_LarsMomentumOptimizer` .
            In these case, sparse must be False. Default: False.
        weight_attr(ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_ParamAttr` . In addition,
            user-defined or pre-trained word vectors can be loaded with the :attr:`param_attr` parameter.
            The local word vector needs to be transformed into numpy format, and the shape of local word
            vector should be consistent with :attr:`num_embeddings` . Then :ref:`api_initializer_NumpyArrayInitializer`
            is used to load custom or pre-trained word vectors. See code example for details.
        name(str|None): For detailed information, please refer
               to :ref:`api_guide_Name`. Usually name is no need to set and
               None by default.
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
    Returns:
        None
    Examples:
        .. code-block:: python
          import numpy as np
          import paddle
          from paddleslim.nas.ofa.layers import SuperEmbedding
          
C
ceci3 已提交
1388
          data = np.random.uniform(-1, 1, [32, 64]).astype('int64')
C
ceci3 已提交
1389
          config = {'channel': 16}
C
ceci3 已提交
1390 1391
          emb = SuperEmbedding(64, 64)
          data = paddle.to_tensor(data)
C
ceci3 已提交
1392 1393 1394
          res = emb(data, **config)
    """

C
ceci3 已提交
1395
    def __init__(self,
C
ceci3 已提交
1396 1397
                 num_embeddings,
                 embedding_dim,
C
ceci3 已提交
1398 1399
                 candidate_config={},
                 padding_idx=None,
C
ceci3 已提交
1400 1401 1402 1403 1404 1405
                 sparse=False,
                 weight_attr=None,
                 name=None):
        super(SuperEmbedding, self).__init__(num_embeddings, embedding_dim,
                                             padding_idx, sparse, weight_attr,
                                             name)
C
ceci3 已提交
1406
        self.candidate_config = candidate_config
C
Chang Xu 已提交
1407
        self.cur_config = None
C
ceci3 已提交
1408 1409
        self.expand_ratio = candidate_config[
            'expand_ratio'] if 'expand_ratio' in candidate_config else None
C
ceci3 已提交
1410
        self.base_output_dim = self._embedding_dim
C
ceci3 已提交
1411
        if self.expand_ratio != None:
C
ceci3 已提交
1412 1413
            self.base_output_dim = int(self._embedding_dim /
                                       max(self.expand_ratio))
C
ceci3 已提交
1414 1415

    def forward(self, input, expand_ratio=None, channel=None):
C
ceci3 已提交
1416 1417 1418 1419 1420 1421
        """
        Parameters:
            input(Tensor): input tensor.
            expand_ratio(int|float, optional): the expansion ratio of filter's channel number in actual calculation. Default: None.
            channel(int, optional): the expansion ratio of filter's channel number in actual calculation. Default: None.
        """
C
ceci3 已提交
1422 1423 1424 1425 1426 1427 1428 1429
        assert (
            expand_ratio == None or channel == None
        ), "expand_ratio and channel CANNOT be NOT None at the same time."
        if expand_ratio != None:
            out_nc = int(expand_ratio * self.base_output_dim)
        elif channel != None:
            out_nc = int(channel)
        else:
C
ceci3 已提交
1430
            out_nc = self._embedding_dim
C
ceci3 已提交
1431

1432 1433 1434 1435
        if self.weight.shape[1] <= out_nc:
            weight = self.weight
        else:
            weight = self.weight[:, :out_nc]
C
Chang Xu 已提交
1436
        self.cur_config = {'prune_dim': list(weight.shape)}
C
ceci3 已提交
1437 1438 1439 1440 1441
        return F.embedding(
            input,
            weight=weight,
            padding_idx=self._padding_idx,
            sparse=self._sparse,
C
Chang Xu 已提交
1442
            name=self._name)