post_quant.py 3.5 KB
Newer Older
G
Guanghua Yu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import sys
import numpy as np
import argparse
import paddle
from ppdet.core.workspace import load_config, merge_config
from ppdet.core.workspace import create
from ppdet.metrics import COCOMetric, VOCMetric
from paddleslim.auto_compression.config_helpers import load_config as load_slim_config
from paddleslim.quant import quant_post_static
25
from paddleslim.common import load_onnx_model
G
Guanghua Yu 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80


def argsparser():
    parser = argparse.ArgumentParser(description=__doc__)
    parser.add_argument(
        '--config_path',
        type=str,
        default=None,
        help="path of compression strategy config.",
        required=True)
    parser.add_argument(
        '--save_dir',
        type=str,
        default='ptq_out',
        help="directory to save compressed model.")
    parser.add_argument(
        '--devices',
        type=str,
        default='gpu',
        help="which device used to compress.")
    parser.add_argument(
        '--algo', type=str, default='KL', help="post quant algo.")

    return parser


def reader_wrapper(reader, input_list):
    def gen():
        for data in reader:
            in_dict = {}
            if isinstance(input_list, list):
                for input_name in input_list:
                    in_dict[input_name] = data[input_name]
            elif isinstance(input_list, dict):
                for input_name in input_list.keys():
                    in_dict[input_list[input_name]] = data[input_name]
            yield in_dict

    return gen


def main():
    global global_config
    all_config = load_slim_config(FLAGS.config_path)
    assert "Global" in all_config, f"Key 'Global' not found in config file. \n{all_config}"
    global_config = all_config["Global"]
    reader_cfg = load_config(global_config['reader_config'])

    train_loader = create('EvalReader')(reader_cfg['TrainDataset'],
                                        reader_cfg['worker_num'],
                                        return_list=True)
    train_loader = reader_wrapper(train_loader, global_config['input_list'])

    place = paddle.CUDAPlace(0) if FLAGS.devices == 'gpu' else paddle.CPUPlace()
    exe = paddle.static.Executor(place)
81 82 83
    load_onnx_model(global_config["model_dir"])
    inference_model_path = global_config["model_dir"].rstrip().rstrip(
        '.onnx') + '_infer'
G
Guanghua Yu 已提交
84 85
    quant_post_static(
        executor=exe,
86
        model_dir=inference_model_path,
G
Guanghua Yu 已提交
87 88
        quantize_model_path=FLAGS.save_dir,
        data_loader=train_loader,
89 90
        model_filename='model.pdmodel',
        params_filename='model.pdiparams',
G
Guanghua Yu 已提交
91 92 93 94 95 96
        batch_size=32,
        batch_nums=10,
        algo=FLAGS.algo,
        hist_percent=0.999,
        is_full_quantize=False,
        bias_correction=False,
97
        onnx_format=True)
G
Guanghua Yu 已提交
98 99 100 101 102 103 104 105 106 107 108


if __name__ == '__main__':
    paddle.enable_static()
    parser = argsparser()
    FLAGS = parser.parse_args()

    assert FLAGS.devices in ['cpu', 'gpu', 'xpu', 'npu']
    paddle.set_device(FLAGS.devices)

    main()