test_act_api.py 4.3 KB
Newer Older
W
whs 已提交
1 2
import sys
import os
C
ceci3 已提交
3
sys.path.append("../../")
W
whs 已提交
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
import unittest
import tempfile
import paddle
import unittest
import numpy as np
from paddle.io import Dataset
from paddleslim.auto_compression import AutoCompression
from paddleslim.auto_compression.config_helpers import load_config


class RandomEvalDataset(Dataset):
    def __init__(self, num_samples, image_shape=[3, 32, 32], class_num=10):
        self.num_samples = num_samples
        self.image_shape = image_shape
        self.class_num = class_num

    def __getitem__(self, idx):
        image = np.random.random(self.image_shape).astype('float32')
        return image

    def __len__(self):
        return self.num_samples


class ACTBase(unittest.TestCase):
    def __init__(self, *args, **kwargs):
        super(ACTBase, self).__init__(*args, **kwargs)
        paddle.enable_static()
        self.tmpdir = tempfile.TemporaryDirectory(prefix="test_")
        self.infer_model_dir = os.path.join(self.tmpdir.name, "infer")
        self.create_program()
        self.create_dataloader()

    def create_program(self):
        main_program = paddle.static.Program()
        startup_program = paddle.static.Program()
        with paddle.static.program_guard(main_program, startup_program):
            data = paddle.static.data(
                name='data', shape=[-1, 3, 32, 32], dtype='float32')
            tmp = paddle.static.nn.conv2d(
                input=data, num_filters=2, filter_size=3)
            out = paddle.static.nn.conv2d(
                input=tmp, num_filters=2, filter_size=3)
        exe = paddle.static.Executor(paddle.CPUPlace())
        exe.run(startup_program)

        paddle.static.save_inference_model(
            self.infer_model_dir, [data], [out], exe, program=main_program)
        print(f"saved infer model to [{self.infer_model_dir}]")

    def create_dataloader(self):
        # define a random dataset
        self.eval_dataset = RandomEvalDataset(32)

    def __del__(self):
        self.tmpdir.cleanup()


class TestYamlQATDistTrain(ACTBase):
    def __init__(self, *args, **kwargs):
        super(TestYamlQATDistTrain, self).__init__(*args, **kwargs)

    def test_compress(self):
        image = paddle.static.data(
            name='data', shape=[-1, 3, 32, 32], dtype='float32')
        train_loader = paddle.io.DataLoader(
            self.eval_dataset, feed_list=[image], batch_size=4)
        ac = AutoCompression(
            model_dir=self.tmpdir.name,
            model_filename="infer.pdmodel",
            params_filename="infer.pdiparams",
            save_dir="output",
            config="./qat_dist_train.yaml",
            train_dataloader=train_loader,
            eval_dataloader=train_loader)  # eval_function to verify accuracy
        ac.compress()


class TestSetQATDist(ACTBase):
    def __init__(self, *args, **kwargs):
        super(TestSetQATDist, self).__init__(*args, **kwargs)

    def test_compress(self):
        image = paddle.static.data(
            name='data', shape=[-1, 3, 32, 32], dtype='float32')
        train_loader = paddle.io.DataLoader(
            self.eval_dataset, feed_list=[image], batch_size=4)
        ac = AutoCompression(
            model_dir=self.tmpdir.name,
            model_filename="infer.pdmodel",
            params_filename="infer.pdiparams",
            save_dir="output",
            config={"QAT", "Distillation"},
            train_dataloader=train_loader,
            eval_dataloader=train_loader)  # eval_function to verify accuracy
        ac.compress()


class TestDictQATDist(ACTBase):
    def __init__(self, *args, **kwargs):
        super(TestDictQATDist, self).__init__(*args, **kwargs)

    def test_compress(self):
        config = load_config("./qat_dist_train.yaml")
        image = paddle.static.data(
            name='data', shape=[-1, 3, 32, 32], dtype='float32')
        train_loader = paddle.io.DataLoader(
            self.eval_dataset, feed_list=[image], batch_size=4)
        ac = AutoCompression(
            model_dir=self.tmpdir.name,
            model_filename="infer.pdmodel",
            params_filename="infer.pdiparams",
            save_dir="output",
            config=config,
            train_dataloader=train_loader,
            eval_dataloader=train_loader)  # eval_function to verify accuracy
        ac.compress()


if __name__ == '__main__':
    unittest.main()