single_distiller_api_doc.md 10.1 KB
Newer Older
B
baiyfbupt 已提交
1 2 3 4 5 6 7 8 9 10
# paddleslim.dist API文档

## merge(teacher_program, student_program, data_name_map, place, scope=fluid.global_scope(), name_prefix='teacher_')

该方法将两个fluid program(teacher_program, student_program)融合为一个program,并将融合得到的program返回。在融合的program中,可以为其中合适的teacher特征图和student特征图添加蒸馏损失函数,从而达到用teacher模型的暗知识(Dark Knowledge)指导student模型学习的目的。

**参数:**

- teacher_program(Program)-定义了teacher模型的paddle program
- student_program(Program)-定义了student模型的paddle program
B
baiyfbupt 已提交
11
- data_name_map(dict)-teacher输入接口名与student输入接口名的映射,key为teacher的输入名,value为student的输入名。merge函数将会把这两个模型的输入按对应关系合并在一起,保证teacher与student输入数据相同
B
baiyfbupt 已提交
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
- place(fluid.CPUPlace()|fluid.CUDAPlace(N))-该参数表示程序运行在何种设备上,这里的N为GPU对应的ID
- scope(Scope)-该参数表示teacher variables和student variables所使用的作用域,如果不指定将使用默认的全局作用域。默认值:fluid.global_scope()
- name_prefix(str)-为了避免teacher variables和student variables存在同名变量而引起命名冲突,merge函数将统一为teacher variables添加一个名称前缀name_prefix,merge后的program中所有teacher variables都将带有这一名称前缀。默认值:'teacher_'

**返回:**由student_program和teacher_program merge得到的program

**使用示例:**

```python
import paddle.fluid as fluid
import paddleslim.dist as dist
student_program = fluid.Program()
with fluid.program_guard(student_program):
    x = fluid.layers.data(name='x', shape=[1, 28, 28])
    conv = fluid.layers.conv2d(x, 32, 1)
    out = fluid.layers.conv2d(conv, 64, 3, padding=1)
teacher_program = fluid.Program()
with fluid.program_guard(teacher_program):
    y = fluid.layers.data(name='y', shape=[1, 28, 28])
    conv = fluid.layers.conv2d(y, 32, 1)
    conv = fluid.layers.conv2d(conv, 32, 3, padding=1)
    out = fluid.layers.conv2d(conv, 64, 3, padding=1)
data_name_map = {'y':'x'}
USE_GPU = False
place = fluid.CUDAPlace(0) if USE_GPU else fluid.CPUPlace()
main_program = dist.merge(teacher_program, student_program, data_name_map, place)
```



## fsp_loss(teacher_var1_name, teacher_var2_name, student_var1_name, student_var2_name, program=fluid.default_main_program())

B
baiyfbupt 已提交
44
fsp_loss为program内的teacher var和student var添加fsp loss,出自论文[A Gift from Knowledge Distillation: Fast Optimization, Network Minimization and Transfer Learning](http://openaccess.thecvf.com/content_cvpr_2017/papers/Yim_A_Gift_From_CVPR_2017_paper.pdf)
B
baiyfbupt 已提交
45 46 47 48 49 50 51

**参数:**

- teacher_var1_name(str): teacher_var1的名称. 对应的variable是一个形为`[batch_size, x_channel, height, width]`的4-D特征图Tensor,数据类型为float32或float64
- teacher_var2_name(str): teacher_var2的名称. 对应的variable是一个形为`[batch_size, y_channel, height, width]`的4-D特征图Tensor,数据类型为float32或float64。只有y_channel可以与teacher_var1的x_channel不同,其他维度必须与teacher_var1相同
- student_var1_name(str): student_var1的名称. 对应的variable需与teacher_var1尺寸保持一致,是一个形为`[batch_size, x_channel, height, width]`的4-D特征图Tensor,数据类型为float32或float64
- student_var2_name(str): student_var2的名称. 对应的variable需与teacher_var2尺寸保持一致,是一个形为`[batch_size, y_channel, height, width]`的4-D特征图Tensor,数据类型为float32或float64。只有y_channel可以与student_var1的x_channel不同,其他维度必须与student_var1相同
B
baiyfbupt 已提交
52
- program(Program): 用于蒸馏训练的fluid program。默认值:fluid.default_main_program()
B
baiyfbupt 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128

**返回:**由teacher_var1, teacher_var2, student_var1, student_var2组合得到的fsp_loss

**使用示例:**

```python
import paddle.fluid as fluid
import paddleslim.dist as dist
student_program = fluid.Program()
with fluid.program_guard(student_program):
    x = fluid.layers.data(name='x', shape=[1, 28, 28])
    conv = fluid.layers.conv2d(x, 32, 1, name='s1')
    out = fluid.layers.conv2d(conv, 64, 3, padding=1, name='s2')
teacher_program = fluid.Program()
with fluid.program_guard(teacher_program):
    y = fluid.layers.data(name='y', shape=[1, 28, 28])
    conv = fluid.layers.conv2d(y, 32, 1, name='t1')
    conv = fluid.layers.conv2d(conv, 32, 3, padding=1)
    out = fluid.layers.conv2d(conv, 64, 3, padding=1, name='t2')
data_name_map = {'y':'x'}
USE_GPU = False
place = fluid.CUDAPlace(0) if USE_GPU else fluid.CPUPlace()
main_program = merge(teacher_program, student_program, data_name_map, place)
with fluid.program_guard(main_program):
    distillation_loss = dist.fsp_loss('teacher_t1.tmp_1', 'teacher_t2.tmp_1', 's1.tmp_1', 's2.tmp_1', main_program)
```



## l2_loss(teacher_var_name, student_var_name, program=fluid.default_main_program())

l2_loss为program内的teacher var和student var添加l2 loss

**参数:**

- teacher_var_name(str): teacher_var的名称. 
- student_var_name(str): student_var的名称.
- program(Program): 用于蒸馏训练的fluid program。默认值:fluid.default_main_program()

**返回:**由teacher_var, student_var组合得到的l2_loss

**使用示例:**

```python
import paddle.fluid as fluid
import paddleslim.dist as dist
student_program = fluid.Program()
with fluid.program_guard(student_program):
    x = fluid.layers.data(name='x', shape=[1, 28, 28])
    conv = fluid.layers.conv2d(x, 32, 1, name='s1')
    out = fluid.layers.conv2d(conv, 64, 3, padding=1, name='s2')
teacher_program = fluid.Program()
with fluid.program_guard(teacher_program):
    y = fluid.layers.data(name='y', shape=[1, 28, 28])
    conv = fluid.layers.conv2d(y, 32, 1, name='t1')
    conv = fluid.layers.conv2d(conv, 32, 3, padding=1)
    out = fluid.layers.conv2d(conv, 64, 3, padding=1, name='t2')
data_name_map = {'y':'x'}
USE_GPU = False
place = fluid.CUDAPlace(0) if USE_GPU else fluid.CPUPlace()
main_program = merge(teacher_program, student_program, data_name_map, place)
with fluid.program_guard(main_program):
    distillation_loss = dist.l2_loss('teacher_t2.tmp_1', 's2.tmp_1', main_program)
```



## soft_label_loss(teacher_var_name, student_var_name, program=fluid.default_main_program(), teacher_temperature=1., student_temperature=1.)

soft_label_loss为program内的teacher var和student var添加soft label loss,出自论文[Distilling the Knowledge in a Neural Network](https://arxiv.org/pdf/1503.02531.pdf)

**参数:**

- teacher_var_name(str): teacher_var的名称. 
- student_var_name(str): student_var的名称. 
- program(Program): 用于蒸馏训练的fluid program。默认值:fluid.default_main_program()
B
baiyfbupt 已提交
129 130
- teacher_temperature(float): 对teacher_var进行soft操作的温度值,温度值越大得到的特征图越平滑 
- student_temperature(float): 对student_var进行soft操作的温度值,温度值越大得到的特征图越平滑 
B
baiyfbupt 已提交
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202

**返回:**由teacher_var, student_var组合得到的soft_label_loss

**使用示例:**

```python
import paddle.fluid as fluid
import paddleslim.dist as dist
student_program = fluid.Program()
with fluid.program_guard(student_program):
    x = fluid.layers.data(name='x', shape=[1, 28, 28])
    conv = fluid.layers.conv2d(x, 32, 1, name='s1')
    out = fluid.layers.conv2d(conv, 64, 3, padding=1, name='s2')
teacher_program = fluid.Program()
with fluid.program_guard(teacher_program):
    y = fluid.layers.data(name='y', shape=[1, 28, 28])
    conv = fluid.layers.conv2d(y, 32, 1, name='t1')
    conv = fluid.layers.conv2d(conv, 32, 3, padding=1)
    out = fluid.layers.conv2d(conv, 64, 3, padding=1, name='t2')
data_name_map = {'y':'x'}
USE_GPU = False
place = fluid.CUDAPlace(0) if USE_GPU else fluid.CPUPlace()
main_program = merge(teacher_program, student_program, data_name_map, place)
with fluid.program_guard(main_program):
    distillation_loss = dist.soft_label_loss('teacher_t2.tmp_1', 's2.tmp_1', main_program, 1., 1.)
```



## loss(loss_func, program=fluid.default_main_program(), **kwargs)

loss函数支持对任意多对teacher_var和student_var使用自定义损失函数

**参数:**

- loss_func(python function): 自定义的损失函数,输入为teacher var和student var,输出为自定义的loss 
- program(Program): 用于蒸馏训练的fluid program。默认值:fluid.default_main_program()
- **kwargs: loss_func输入名与对应variable名称

**返回**:自定义的损失函数loss

**使用示例:**

```python
import paddle.fluid as fluid
import paddleslim.dist as dist
student_program = fluid.Program()
with fluid.program_guard(student_program):
    x = fluid.layers.data(name='x', shape=[1, 28, 28])
    conv = fluid.layers.conv2d(x, 32, 1, name='s1')
    out = fluid.layers.conv2d(conv, 64, 3, padding=1, name='s2')
teacher_program = fluid.Program()
with fluid.program_guard(teacher_program):
    y = fluid.layers.data(name='y', shape=[1, 28, 28])
    conv = fluid.layers.conv2d(y, 32, 1, name='t1')
    conv = fluid.layers.conv2d(conv, 32, 3, padding=1)
    out = fluid.layers.conv2d(conv, 64, 3, padding=1, name='t2')
data_name_map = {'y':'x'}
USE_GPU = False
place = fluid.CUDAPlace(0) if USE_GPU else fluid.CPUPlace()
main_program = merge(teacher_program, student_program, data_name_map, place)
def adaptation_loss(t_var, s_var):
    teacher_channel = t_var.shape[1]
    s_hint = fluid.layers.conv2d(s_var, teacher_channel, 1)
    hint_loss = fluid.layers.reduce_mean(fluid.layers.square(s_hint - t_var))
    return hint_loss
with fluid.program_guard(main_program):
    distillation_loss = dist.loss(main_program, adaptation_loss, t_var='teacher_t2.tmp_1', s_var='s2.tmp_1')
```

## 注意事项

B
baiyfbupt 已提交
203
在添加蒸馏loss时会引入新的variable,需要注意新引入的variable不要与student variables命名冲突。这里建议两种用法:
B
baiyfbupt 已提交
204

B
baiyfbupt 已提交
205 206
1. 建议与student_program使用同一个命名空间,以避免一些未指定名称的variables(例如tmp_0, tmp_1...)多次定义为同一名称出现命名冲突
2. 建议在添加蒸馏loss时指定一个命名空间前缀,具体用法请参考Paddle官方文档[fluid.name_scope](https://www.paddlepaddle.org.cn/documentation/docs/zh/api_cn/fluid_cn/name_scope_cn.html#name-scope)