eval.py 5.0 KB
Newer Older
G
Guanghua Yu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import sys
import numpy as np
import argparse
import paddle
from ppdet.core.workspace import load_config, merge_config
from ppdet.core.workspace import create
from ppdet.metrics import COCOMetric, VOCMetric
from paddleslim.auto_compression.config_helpers import load_config as load_slim_config

from post_process import YOLOv7PostProcess


def argsparser():
    parser = argparse.ArgumentParser(description=__doc__)
    parser.add_argument(
        '--config_path',
        type=str,
        default=None,
        help="path of compression strategy config.",
        required=True)
    parser.add_argument(
        '--devices',
        type=str,
        default='gpu',
        help="which device used to compress.")

    return parser


def reader_wrapper(reader, input_list):
    def gen():
        for data in reader:
            in_dict = {}
            if isinstance(input_list, list):
                for input_name in input_list:
                    in_dict[input_name] = data[input_name]
            elif isinstance(input_list, dict):
                for input_name in input_list.keys():
                    in_dict[input_list[input_name]] = data[input_name]
            yield in_dict

    return gen


def convert_numpy_data(data, metric):
    data_all = {}
    data_all = {k: np.array(v) for k, v in data.items()}
    if isinstance(metric, VOCMetric):
        for k, v in data_all.items():
            if not isinstance(v[0], np.ndarray):
                tmp_list = []
                for t in v:
                    tmp_list.append(np.array(t))
                data_all[k] = np.array(tmp_list)
    else:
        data_all = {k: np.array(v) for k, v in data.items()}
    return data_all


def eval():

    place = paddle.CUDAPlace(0) if FLAGS.devices == 'gpu' else paddle.CPUPlace()
    exe = paddle.static.Executor(place)

    val_program, feed_target_names, fetch_targets = paddle.static.load_inference_model(
        global_config["model_dir"],
        exe,
        model_filename=global_config["model_filename"],
        params_filename=global_config["params_filename"])
    print('Loaded model from: {}'.format(global_config["model_dir"]))

    metric = global_config['metric']
    for batch_id, data in enumerate(val_loader):
        data_all = convert_numpy_data(data, metric)
        data_input = {}
        for k, v in data.items():
            if isinstance(global_config['input_list'], list):
                if k in global_config['input_list']:
                    data_input[k] = np.array(v)
            elif isinstance(global_config['input_list'], dict):
                if k in global_config['input_list'].keys():
                    data_input[global_config['input_list'][k]] = np.array(v)
        outs = exe.run(val_program,
                       feed=data_input,
                       fetch_list=fetch_targets,
                       return_numpy=False)
        res = {}
        postprocess = YOLOv7PostProcess(
            score_threshold=0.001, nms_threshold=0.65, multi_label=True)
        res = postprocess(np.array(outs[0]), data_all['scale_factor'])
        metric.update(data_all, res)
        if batch_id % 100 == 0:
            print('Eval iter:', batch_id)
    metric.accumulate()
    metric.log()
    metric.reset()


def main():
    global global_config
    all_config = load_slim_config(FLAGS.config_path)
    global_config = all_config["Global"]
    reader_cfg = load_config(global_config['reader_config'])

    dataset = reader_cfg['EvalDataset']
    global val_loader
    val_loader = create('EvalReader')(reader_cfg['EvalDataset'],
                                      reader_cfg['worker_num'],
                                      return_list=True)
    metric = None
    if reader_cfg['metric'] == 'COCO':
        clsid2catid = {v: k for k, v in dataset.catid2clsid.items()}
        anno_file = dataset.get_anno()
        metric = COCOMetric(
            anno_file=anno_file, clsid2catid=clsid2catid, IouType='bbox')
    elif reader_cfg['metric'] == 'VOC':
        metric = VOCMetric(
            label_list=dataset.get_label_list(),
            class_num=reader_cfg['num_classes'],
            map_type=reader_cfg['map_type'])
    else:
        raise ValueError("metric currently only supports COCO and VOC.")
    global_config['metric'] = metric

    eval()


if __name__ == '__main__':
    paddle.enable_static()
    parser = argsparser()
    FLAGS = parser.parse_args()

    assert FLAGS.devices in ['cpu', 'gpu', 'xpu', 'npu']
    paddle.set_device(FLAGS.devices)

    main()