compressor.py 36.1 KB
Newer Older
C
ceci3 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
import os
import sys
import numpy as np
import inspect
C
ceci3 已提交
20
import shutil
W
whs 已提交
21
from time import gmtime, strftime
22
import platform
C
ceci3 已提交
23 24
import paddle
import paddle.distributed.fleet as fleet
25
from ..quant.quanter import convert, quant_post
C
ceci3 已提交
26 27
from ..common.recover_program import recover_inference_program
from ..common import get_logger
C
ceci3 已提交
28 29
from ..common.patterns import get_patterns
from ..analysis import TableLatencyPredictor
Z
zhouzj 已提交
30
from .create_compressed_program import build_distill_program, build_quant_program, build_prune_program, remove_unused_var_nodes
C
ceci3 已提交
31
from .strategy_config import ProgramInfo, merge_config
32
from .auto_strategy import prepare_strategy, get_final_quant_config, create_strategy_config, create_train_config
33
from .utils.predict import with_variable_shape
C
ceci3 已提交
34 35 36

_logger = get_logger(__name__, level=logging.INFO)

C
ceci3 已提交
37 38
try:
    if platform.system().lower() == 'linux':
C
ceci3 已提交
39
        from ..quant import post_quant_hpo
C
ceci3 已提交
40 41 42
except Exception as e:
    _logger.warning(e)

C
ceci3 已提交
43 44 45 46 47 48 49 50

class AutoCompression:
    def __init__(self,
                 model_dir,
                 model_filename,
                 params_filename,
                 save_dir,
                 train_dataloader,
51
                 input_shapes=None,
C
ceci3 已提交
52 53 54
                 train_config=None,
                 strategy_config=None,
                 target_speedup=None,
55
                 eval_callback=None,
C
ceci3 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
                 eval_dataloader=None,
                 deploy_hardware='gpu'):
        """
        Compress inference model automatically.

        Args:
            model_dir(str): The path of inference model that will be compressed, and
                the model and params that saved by ``paddle.static.io.save_inference_model``
                are under the path.
            model_filename(str, optional):  The name of model file. If parameters
                are saved in separate files, set it as 'None'. Default: 'None'.
            params_filename(str, optional): The name of params file.
                When all parameters are saved in a single file, set it
                as filename. If parameters are saved in separate files,
                set it as 'None'. Default : 'None'.
W
whs 已提交
71 72
            save_dir(str): The path to save compressed model. The models in this directory will be overwrited
                after calling 'compress()' function.
C
ceci3 已提交
73 74 75
            train_data_loader(Python Generator, Paddle.io.DataLoader): The
                Generator or Dataloader provides train data, and it could
                return a batch every time.
76 77 78 79 80 81 82
            input_shapes(dict|tuple|list): It is used when the model has implicit dimensions except batch size. 
                If it is a dict, the key is the name of input and the value is the shape. 
                Given the input shape of input "X" is [-1, 3, -1, -1] which means the batch size, hight
                and width is variable. And the input_shapes can be set {"X": [-1, 3, 512, 512]}.
                If it is a list or tuple, the number of model's inputs should be 1. And the shape of input
                will be set input_shapes. None means keeping the original shapes, then
                the compression strategies searching may be skipped. Default: None.
C
ceci3 已提交
83 84 85 86 87 88 89 90 91 92 93
            train_config(dict, optional): The train config in the compression process, the key can 
                reference `<https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L103>`_ . 
                Only one strategy(quant_post with hyperparameter optimization) can set train_config 
                to None. Default: None. 
            strategy_config(dict, list(dict), optional): The strategy config. You can set single config to get multi-strategy config, such as
                1. set ``Quantization`` and ``Distillation`` to get quant_aware and distillation compress config.
                    The Quantization config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L24`_ .
                    The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L39`_ .
                2. set ``Quantization`` and ``HyperParameterOptimization`` to get quant_post and hyperparameter optimization compress config.
                    The Quantization config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L24`_ .
                    The HyperParameterOptimization config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L73`_ .
C
ceci3 已提交
94 95
                3. set ``ChannelPrune`` and ``Distillation`` to get channel prune and distillation compress config.
                    The ChannelPrune config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L82`_ .
C
ceci3 已提交
96
                    The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L39`_ .
C
ceci3 已提交
97 98 99 100 101 102 103
                4. set ``ASPPrune`` and ``Distillation`` to get asp prune and distillation compress config.
                    The ASPPrune config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L82`_ .
                    The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L39`_ .
                5. set ``TransformerPrune`` and ``Distillation`` to get transformer prune and distillation compress config.
                    The TransformerPrune config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L82`_ .
                    The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L39`_ .
                6. set ``UnstructurePrune`` and ``Distillation`` to get unstructureprune and distillation compress config.
C
ceci3 已提交
104 105
                    The UnstructurePrune config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L91`_ .
                    The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L39`_ .
C
ceci3 已提交
106
                7. set ``Distillation`` to use one teacher modol to distillation student model.
C
ceci3 已提交
107
                    The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L39`_ .
C
ceci3 已提交
108
                8. set ``MultiTeacherDistillation`` to use multi-teacher to distillation student model.
C
ceci3 已提交
109 110 111 112 113
                    The MultiTeacherDistillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L56`_ .

                If set to None, will choose a strategy automatically. Default: None.
            target_speedup(float, optional): target speedup ratio by the way of auto compress. Default: None.
            eval_callback(function, optional): eval function, define by yourself to return the metric of the inference program, can be used to judge the metric of compressed model. The documents of how to write eval function is `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/docs/zh_cn/api_cn/static/auto-compression/custom_function.rst`_ . ``eval_callback`` and ``eval_dataloader`` cannot be None at the same time. Dafault: None.
114 115 116
            eval_dataloader(paddle.io.Dataloader, optional):  The Generator or Dataloader provides eval data, and it could
                 return a batch every time. If eval_dataloader is None, will take first 5000 sample from train_dataloader 
                 as eval_dataloader, and the metric of eval_dataloader for reference only. Dafault: None.
C
ceci3 已提交
117 118
            deploy_hardware(str, optional): The hardware you want to deploy. Default: 'gpu'.
        """
C
ceci3 已提交
119
        self.model_dir = model_dir
C
ceci3 已提交
120 121
        if model_filename == 'None':
            model_filename = None
C
ceci3 已提交
122
        self.model_filename = model_filename
C
ceci3 已提交
123 124
        if params_filename == 'None':
            params_filename = None
C
ceci3 已提交
125
        self.params_filename = params_filename
C
ceci3 已提交
126
        self.final_dir = save_dir
W
whs 已提交
127 128
        if not os.path.exists(self.final_dir):
            os.makedirs(self.final_dir)
C
ceci3 已提交
129 130 131
        self.strategy_config = strategy_config
        self.train_config = train_config
        self.train_dataloader = train_dataloader
C
ceci3 已提交
132 133
        self.target_speedup = target_speedup
        self.eval_function = eval_callback
134
        self.deploy_hardware = deploy_hardware
135 136 137 138

        if eval_dataloader is None:
            eval_dataloader = self._get_eval_dataloader(train_dataloader)
        self.eval_dataloader = eval_dataloader
C
ceci3 已提交
139

C
ceci3 已提交
140
        paddle.enable_static()
C
ceci3 已提交
141 142 143
        self._exe, self._places = self._prepare_envs()
        self.model_type = self._get_model_type(self._exe, model_dir,
                                               model_filename, params_filename)
C
ceci3 已提交
144

C
ceci3 已提交
145 146 147
        if self.train_config is not None and self.train_config.use_fleet:
            fleet.init(is_collective=True)

148 149 150 151 152 153 154 155 156 157 158 159 160
        if with_variable_shape(
                self.model_dir,
                model_filename=model_filename,
                params_filename=params_filename) and input_shapes is not None:

            infer_shape_model = self.create_tmp_dir(
                self.final_dir, prefix="infer_shape_model_")
            self._infer_shape(model_dir, self.model_filename,
                              self.params_filename, input_shapes,
                              infer_shape_model)
            self.model_dir = infer_shape_model
            self.model_filename = "infered_shape.pdmodel"
            self.params_filename = "infered_shape.pdiparams"
C
ceci3 已提交
161 162
        if self.strategy_config is None:
            strategy_config = prepare_strategy(
C
ceci3 已提交
163 164 165
                self._exe, self._places, self.model_dir, self.model_filename,
                self.params_filename, self.target_speedup, self.deploy_hardware,
                self.model_type)
C
ceci3 已提交
166 167 168 169 170 171 172 173 174 175
            self.strategy_config = strategy_config
        elif isinstance(self.strategy_config, dict):
            self.strategy_config = [self.strategy_config]
        elif isinstance(self.strategy_config, str):
            strategy_config = create_strategy_config(self.strategy_config,
                                                     self.model_type)

        self._strategy, self._config = self._prepare_strategy(
            self.strategy_config)

176 177 178 179 180
        # If train_config is None, set default train_config
        if self.train_config is None:
            self.train_config = create_train_config(self.strategy_config,
                                                    self.model_type)

181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
    def _infer_shape(self, model_dir, model_filename, params_filename,
                     input_shapes, save_path):
        assert type(input_shapes) in [
            dict, list, tuple
        ], f'Type of input_shapes should be in [dict, tuple or list] but got {type(input_shapes)}.'
        paddle.enable_static()
        exe = paddle.static.Executor(paddle.CPUPlace())
        [inference_program, feed_target_names, fetch_targets] = (
            paddle.static.load_inference_model(
                model_dir,
                exe,
                model_filename=model_filename,
                params_filename=params_filename))

        if type(input_shapes) in [list, tuple]:
            assert len(
                feed_target_names
            ) == 1, f"The number of model's inputs should be 1 but got {feed_target_names}."
            input_shapes = {feed_target_names[0]: input_shapes}

        feed_vars = []
        for var_ in inference_program.list_vars():
            if var_.name in feed_target_names:
                feed_vars.append(var_)
                var_.desc.set_shape(input_shapes[var_.name])

        for block in inference_program.blocks:
            for op in block.ops:
                if op.type not in ["feed", "fetch"]:
                    op.desc.infer_shape(block.desc)

        save_path = os.path.join(save_path, "infered_shape")
        os.makedirs(save_path)
        paddle.static.save_inference_model(
            save_path, feed_vars, fetch_targets, exe, program=inference_program)
        _logger.info(f"Saved model infered shape to {save_path}")

    @property
    def deploy_hardware(self):
        return self._deploy_hardware

    @deploy_hardware.setter
    def deploy_hardware(self, value):
224 225 226 227
        supported_hardware = TableLatencyPredictor.hardware_list + [
            'gpu',  # nvidia gpu
            "cpu",  # intel cpu
        ]
228 229 230
        if value is not None:
            # Fail-fast when deploy hardware is set explicitly
            assert (
231 232
                value in supported_hardware
            ), f"Hardware should be in supported list {supported_hardware} but got {value}. Or you can set deploy_hardware None."
233 234
        self._deploy_hardware = value

235 236 237 238 239 240 241 242 243 244 245
    def _get_eval_dataloader(self, train_dataloader):
        def _gen():
            len_loader = len(list(train_dataloader()))
            ### max eval_dataloader is 5000 if use train_dataloader as eval_dataloader
            slice_len = min(5000, len_loader)
            ret = list(itertools.islice(train_dataloader(), slice_len))
            for i in ret:
                yield i

        return _gen

C
ceci3 已提交
246 247
    def _prepare_envs(self):
        devices = paddle.device.get_device().split(':')[0]
C
ceci3 已提交
248 249 250 251
        places = paddle.device._convert_to_place(devices)
        exe = paddle.static.Executor(places)
        return exe, places

C
ceci3 已提交
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
    def _get_model_type(self, exe, model_dir, model_filename, params_filename):
        [inference_program, _, _]= paddle.fluid.io.load_inference_model( \
            dirname=model_dir, \
            model_filename=model_filename, params_filename=params_filename,
            executor=exe)
        _, _, model_type = get_patterns(inference_program)
        return model_type

    def _prepare_strategy(self, strategy_config):
        if not isinstance(strategy_config, list):
            strategy_config = list(list(strategy_config))

        strategy = []
        config = []
        for strategy_c in strategy_config:
            quant_config = strategy_c.get("Quantization", None)
            hpo_config = strategy_c.get("HyperParameterOptimization", None)
C
ceci3 已提交
269 270 271
            prune_config = strategy_c.get("ChannelPrune", None)
            asp_config = strategy_c.get("ASPPrune", None)
            transformer_prune_config = strategy_c.get("TransformerPrune", None)
C
ceci3 已提交
272 273 274
            unstructure_prune_config = strategy_c.get("UnstructurePrune", None)
            single_teacher_distill_config = strategy_c.get("Distillation", None)
            if single_teacher_distill_config is not None and single_teacher_distill_config.teacher_model_dir is None:
C
ceci3 已提交
275 276 277
                single_teacher_distill_config.teacher_model_dir = self.model_dir
                single_teacher_distill_config.teacher_model_filename = self.model_filename
                single_teacher_distill_config.teacher_params_filename = self.params_filename
C
ceci3 已提交
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299

            multi_teacher_distill_config = strategy_c.get(
                "MultiTeacherDistillation", None)

            assert (single_teacher_distill_config is None) or (multi_teacher_distill_config is None), \
                "Distillation and MultiTeacherDistillation cannot be set at the same time."
            self._distill_config = single_teacher_distill_config if \
                   single_teacher_distill_config is not None else \
                   multi_teacher_distill_config

            ### case1: quant_config & hpo_config ==> PTQ & HPO
            if quant_config is not None and hpo_config is not None:
                strategy.append('ptq_hpo')
                config.append(merge_config(quant_config, hpo_config))

            ### case2: quant_config & distill config ==> QAT & Distill
            elif quant_config is not None and self._distill_config is not None:
                strategy.append('qat_dis')
                config.append(merge_config(quant_config, self._distill_config))

            ### case3: prune_config & distill config
            elif prune_config is not None and self._distill_config is not None:
C
ceci3 已提交
300
                strategy.append('channel_prune_dis')
C
ceci3 已提交
301 302
                config.append(merge_config(prune_config, self._distill_config))

C
ceci3 已提交
303 304 305 306 307 308 309 310 311 312 313 314 315
            ### case4: asp_config & distill config
            elif asp_config is not None and self._distill_config is not None:
                strategy.append('asp_prune_dis')
                config.append(merge_config(asp_config, self._distill_config))

            ### case5: transformer_prune_config & distill config
            elif transformer_prune_config is not None and self._distill_config is not None:
                strategy.append('transformer_prune_dis')
                config.append(
                    merge_config(transformer_prune_config,
                                 self._distill_config))

            ### case6: unstructure_config & distill config
C
ceci3 已提交
316 317 318 319 320 321
            elif unstructure_prune_config is not None and self._distill_config is not None:
                strategy.append('unstructure_prune_dis')
                config.append(
                    merge_config(unstructure_prune_config,
                                 self._distill_config))

C
ceci3 已提交
322
            ### case7: distill_config
C
ceci3 已提交
323 324 325 326 327 328 329
            elif self._distill_config is not None:
                if single_teacher_distill_config is not None:
                    strategy.append('single_teacher_dis')
                    config.append(single_teacher_distill_config)
                else:
                    strategy.append('multi_teacher_dis')
                    config.append(multi_teacher_distill_config)
C
ceci3 已提交
330

C
ceci3 已提交
331 332 333 334 335
            ### case N: todo
            else:
                raise NotImplementedError(
                    "Not Implemented {} be set at the same time now".format(
                        strategy_c.keys()))
C
ceci3 已提交
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353

        return strategy, config

    def _prepare_fleet_strategy(train_config):
        build_strategy = paddle.static.BuildStrategy()
        exec_strategy = paddle.static.ExecutionStrategy()

        strategy = fleet.DistributedStrategy()
        strategy.build_strategy = build_strategy
        if train_config.recompute_config is not None:
            strategy.recompute = True
            strategy.recompute_configs = { ** train_config.recompute_config}
        if train_config.sharding_config is not None:
            strategy.sharding = True
            strategy.sharding_configs = { ** train_config.sharding_config}
        if train_config.amp_config is not None:
            strategy.amp = True
            strategy.amp_configs = { ** train_config.amp_config}
354 355
        if train_config.asp_config is not None:
            strategy.asp = True
C
ceci3 已提交
356 357
        return strategy

C
ceci3 已提交
358 359
    def _prepare_program(self, program, feed_target_names, fetch_targets,
                         patterns, default_distill_node_pair, strategy, config):
C
ceci3 已提交
360 361 362 363 364
        train_program = recover_inference_program(program)
        startup_program = paddle.static.Program()
        train_program_info = ProgramInfo(startup_program, train_program,
                                         feed_target_names, fetch_targets)

C
ceci3 已提交
365
        config_dict = config.__dict__
366 367 368
        if "prune_strategy" in config_dict and config_dict[
                "prune_strategy"] == "gmp" and config_dict[
                    'gmp_config'] is None:
Z
zhouzj 已提交
369 370 371
            _logger.info(
                "Calculating the iterations per epoch……(It will take some time)")
            # NOTE:XXX: This way of calculating the iters needs to be improved.
G
Guanghua Yu 已提交
372 373 374 375 376 377 378 379
            if self.train_config.epochs:
                iters_per_epoch = len(list(self.train_dataloader()))
                total_iters = self.train_config.epochs * iters_per_epoch
            elif self.train_config.train_iter:
                total_iters = self.train_config.train_iter
            else:
                raise RuntimeError(
                    'train_config must has `epochs` or `train_iter` field.')
Z
zhouzj 已提交
380 381 382 383 384 385 386 387
            config_dict['gmp_config'] = {
                'stable_iterations': 0,
                'pruning_iterations': 0.45 * total_iters,
                'tunning_iterations': 0.45 * total_iters,
                'resume_iteration': -1,
                'pruning_steps': 100,
                'initial_ratio': 0.15,
            }
C
ceci3 已提交
388 389
        ### add prune program
        self._pruner = None
C
ceci3 已提交
390
        if 'prune' in strategy:
C
ceci3 已提交
391 392
            self._pruner, train_program_info = build_prune_program(
                self._exe, self._places, config_dict, train_program_info,
C
ceci3 已提交
393
                strategy, patterns, self.eval_dataloader)
C
ceci3 已提交
394 395 396 397 398 399 400

        if self.train_config.use_fleet:
            dist_strategy = _prepare_fleet_strategy(self.train_config)
        else:
            dist_strategy = None

        ### add distill program
C
ceci3 已提交
401
        if 'dis' in strategy:
C
ceci3 已提交
402 403 404 405
            train_program_info, test_program_info = build_distill_program(
                self._exe,
                self._places,
                config_dict,
C
ceci3 已提交
406
                self.train_config.__dict__,
C
ceci3 已提交
407 408
                train_program_info,
                pruner=self._pruner,
C
ceci3 已提交
409 410
                dist_strategy=dist_strategy,
                default_distill_node_pair=default_distill_node_pair)
C
ceci3 已提交
411 412 413

        self._quant_config = None
        ### add quant_aware program, quant always is last step
C
ceci3 已提交
414
        if 'qat' in strategy:
C
ceci3 已提交
415 416 417
            train_program_info, test_program_info, self._quant_config = build_quant_program(
                self._exe, self._places, config_dict, train_program_info,
                test_program_info)
Z
zhouzj 已提交
418 419
        if self.train_config.sparse_model:
            from ..prune.unstructured_pruner import UnstructuredPruner
Z
zhouzj 已提交
420
            # NOTE: The initialization parameter of this pruner doesn't work, it is only used to call the 'set_static_masks' function
Z
zhouzj 已提交
421 422 423 424 425 426
            self._pruner = UnstructuredPruner(
                train_program_info.program,
                mode='ratio',
                ratio=0.75,
                prune_params_type='conv1x1_only',
                place=self._places)
Z
zhouzj 已提交
427
            self._pruner.set_static_masks()  # Fixed model sparsity
C
ceci3 已提交
428 429 430 431 432 433 434 435 436 437

        self._exe.run(train_program_info.startup_program)

        if (not self.train_config.use_fleet
            ) and self.train_config.amp_config is not None:
            if hasattr(self.train_config.amp_config, 'use_pure_fp16'
                       ) and self.train_config.amp_config.use_pure_fp16:
                train_program_info.optimizer.amp_init(
                    self._places, scope=paddle.static.global_scope())

C
ceci3 已提交
438
        if 'asp' in strategy:
C
ceci3 已提交
439 440 441 442 443
            ### prune weight in scope
            self._pruner.prune_model(train_program_info.program)

        if not self.train_config.use_fleet:
            train_program_info = self._compiled_program(train_program_info,
C
ceci3 已提交
444
                                                        strategy)
C
ceci3 已提交
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
            test_program_info = self._compiled_program(test_program_info,
                                                       self._strategy)
        return train_program_info, test_program_info

    def _compiled_program(self, program_info, strategy):
        compiled_prog = paddle.static.CompiledProgram(program_info.program)
        build_strategy = paddle.static.BuildStrategy()
        exec_strategy = paddle.static.ExecutionStrategy()
        if 'qat' in strategy:
            build_strategy.memory_optimize = False
            build_strategy.enable_inplace = False
            build_strategy.fuse_all_reduce_ops = False
            build_strategy.sync_batch_norm = False

        compiled_prog = compiled_prog.with_data_parallel(
            loss_name=program_info.fetch_targets[0].name,
            build_strategy=build_strategy,
            exec_strategy=exec_strategy)
        program_info.program = compiled_prog
        return program_info

466
    def create_tmp_dir(self, base_dir, prefix="tmp"):
W
whs 已提交
467
        # create a new temp directory in final dir
468 469 470 471 472 473
        s_datetime = strftime("%Y-%m-%d-%H:%M:%S", gmtime())
        tmp_base_name = "_".join([prefix, str(os.getpid()), s_datetime])
        tmp_dir = os.path.join(base_dir, tmp_base_name)
        if not os.path.exists(tmp_dir):
            os.makedirs(tmp_dir)
        return tmp_dir
W
whs 已提交
474

475
    def compress(self):
476
        self.tmp_dir = self.create_tmp_dir(self.final_dir)
C
ceci3 已提交
477 478 479 480 481 482 483
        for strategy_idx, (
                strategy,
                config) in enumerate(zip(self._strategy, self._config)):
            self.single_strategy_compress(strategy, config, strategy_idx)

        if strategy == 'ptq_hpo' and config.max_quant_count == 1 and platform.system(
        ).lower() == 'linux':
C
ceci3 已提交
484
            ptq_loss = post_quant_hpo.g_min_emd_loss
C
ceci3 已提交
485

C
ceci3 已提交
486 487 488 489 490 491
            final_quant_config = get_final_quant_config(ptq_loss)
            if final_quant_config is not None:
                quant_strategy, quant_config = self._prepare_strategy(
                    final_quant_config)
                self.single_strategy_compress(quant_strategy[0],
                                              quant_config[0], strategy_idx)
492
        tmp_model_path = os.path.join(
W
whs 已提交
493
            self.tmp_dir, 'strategy_{}'.format(str(strategy_idx + 1)))
C
ceci3 已提交
494
        final_model_path = os.path.join(self.final_dir)
495 496
        if not os.path.exists(final_model_path):
            os.makedirs(final_model_path)
C
ceci3 已提交
497 498 499 500 501 502 503
        tmp_model_file = os.path.join(tmp_model_path, self.model_filename)
        tmp_params_file = os.path.join(tmp_model_path, self.params_filename)
        final_model_file = os.path.join(final_model_path, self.model_filename)
        final_params_file = os.path.join(final_model_path, self.params_filename)
        if paddle.distributed.get_rank() == 0:
            shutil.move(tmp_model_file, final_model_file)
            shutil.move(tmp_params_file, final_params_file)
W
whs 已提交
504
            shutil.rmtree(self.tmp_dir)
C
ceci3 已提交
505
            _logger.info(
G
Guanghua Yu 已提交
506
                "==> The ACT compression has been completed and the final model is saved in `{}`".
C
ceci3 已提交
507
                format(final_model_path))
C
ceci3 已提交
508 509 510
        os._exit(0)

    def single_strategy_compress(self, strategy, config, strategy_idx):
511 512 513 514 515 516 517
        # start compress, including train/eval model
        # TODO: add the emd loss of evaluation model.
        if strategy == 'quant_post':
            quant_post(
                self._exe,
                model_dir=self.model_dir,
                quantize_model_path=os.path.join(
W
whs 已提交
518
                    self.tmp_dir, 'strategy_{}'.format(str(strategy_idx + 1))),
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
                data_loader=self.train_dataloader,
                model_filename=self.model_filename,
                params_filename=self.params_filename,
                save_model_filename=self.model_filename,
                save_params_filename=self.params_filename,
                batch_size=1,
                batch_nums=config.batch_num,
                algo=config.ptq_algo,
                round_type='round',
                bias_correct=config.bias_correct,
                hist_percent=config.hist_percent,
                quantizable_op_type=config.quantize_op_types,
                is_full_quantize=config.is_full_quantize,
                weight_bits=config.weight_bits,
                activation_bits=config.activation_bits,
                activation_quantize_type='range_abs_max',
                weight_quantize_type=config.weight_quantize_type,
                onnx_format=False)

        elif strategy == 'ptq_hpo':
539 540 541 542
            if platform.system().lower() != 'linux':
                raise NotImplementedError(
                    "post-quant-hpo is not support in system other than linux")

C
ceci3 已提交
543
            post_quant_hpo.quant_post_hpo(
C
ceci3 已提交
544 545 546
                self._exe,
                self._places,
                model_dir=self.model_dir,
C
ceci3 已提交
547
                quantize_model_path=os.path.join(
W
whs 已提交
548
                    self.tmp_dir, 'strategy_{}'.format(str(strategy_idx + 1))),
C
ceci3 已提交
549 550 551 552 553 554 555
                train_dataloader=self.train_dataloader,
                eval_dataloader=self.eval_dataloader,
                eval_function=self.eval_function,
                model_filename=self.model_filename,
                params_filename=self.params_filename,
                save_model_filename=self.model_filename,
                save_params_filename=self.params_filename,
C
ceci3 已提交
556 557 558 559 560 561 562 563
                quantizable_op_type=config.quantize_op_types,
                weight_bits=config.weight_bits,
                activation_bits=config.activation_bits,
                weight_quantize_type=config.weight_quantize_type,
                is_full_quantize=config.is_full_quantize,
                algo=config.ptq_algo,
                bias_correct=config.bias_correct,
                hist_percent=config.hist_percent,
C
ceci3 已提交
564
                batch_size=[1],
C
ceci3 已提交
565 566
                batch_num=config.batch_num,
                runcount_limit=config.max_quant_count)
C
ceci3 已提交
567 568

        else:
C
ceci3 已提交
569 570 571 572 573 574
            assert 'dis' in strategy, "Only support optimizer compressed model by distillation loss."

            if strategy_idx == 0:
                model_dir = self.model_dir
            else:
                model_dir = os.path.join(
W
whs 已提交
575
                    self.tmp_dir, 'strategy_{}'.format(str(strategy_idx)))
C
ceci3 已提交
576 577

            [inference_program, feed_target_names, fetch_targets]= paddle.fluid.io.load_inference_model( \
C
ceci3 已提交
578
                dirname=model_dir, \
C
ceci3 已提交
579 580 581 582
                model_filename=self.model_filename, params_filename=self.params_filename,
                executor=self._exe)

            ### used to check whether the dataloader is right
C
ceci3 已提交
583
            self.metric_before_compressed = None
C
ceci3 已提交
584
            if self.eval_function is not None and self.train_config.origin_metric is not None:
C
ceci3 已提交
585
                _logger.info("start to test metric before compress")
C
ceci3 已提交
586 587 588 589 590 591 592 593 594 595 596
                metric = self.eval_function(self._exe, inference_program,
                                            feed_target_names, fetch_targets)
                _logger.info("metric of compressed model is: {}".format(metric))
                buf = 0.05
                if metric < (float(self.train_config.origin_metric) - buf) or \
                        metric > (float(self.train_config.origin_metric) + buf):
                    raise RuntimeError("target metric of pretrained model is {}, \
                          but now is {}, Please check the format of evaluation dataset \
                          or check the origin_metric in train_config"
                                                                     .format(\
                          self.train_config.origin_metric, metric))
C
ceci3 已提交
597 598 599 600
                self.metric_before_compressed = metric

            patterns, default_distill_node_pair, _ = get_patterns(
                inference_program)
C
ceci3 已提交
601 602

            train_program_info, test_program_info = self._prepare_program(
C
ceci3 已提交
603 604
                inference_program, feed_target_names, fetch_targets, patterns,
                default_distill_node_pair, strategy, config)
Z
zhouzj 已提交
605 606 607
            if 'unstructure' in self._strategy:
                test_program_info.program._program = remove_unused_var_nodes(
                    test_program_info.program._program)
C
ceci3 已提交
608
            test_program_info = self._start_train(train_program_info,
C
ceci3 已提交
609 610
                                                  test_program_info, strategy)
            self._save_model(test_program_info, strategy, strategy_idx)
C
ceci3 已提交
611

C
ceci3 已提交
612
    def _start_train(self, train_program_info, test_program_info, strategy):
C
ceci3 已提交
613
        best_metric = -1.0
G
Guanghua Yu 已提交
614 615
        total_epochs = self.train_config.epochs if self.train_config.epochs else 1
        for epoch_id in range(total_epochs):
C
ceci3 已提交
616 617 618 619
            for batch_id, data in enumerate(self.train_dataloader()):
                np_probs_float, = self._exe.run(train_program_info.program, \
                    feed=data, \
                    fetch_list=train_program_info.fetch_targets)
620 621
                if not isinstance(train_program_info.learning_rate, float):
                    train_program_info.learning_rate.step()
C
ceci3 已提交
622
                if 'unstructure' in strategy:
C
ceci3 已提交
623 624 625 626 627 628 629 630 631 632
                    self._pruner.step()

                if self.train_config.logging_iter is None:
                    logging_iter = 10
                else:
                    logging_iter = self.train_config.logging_iter
                if batch_id % int(logging_iter) == 0:
                    _logger.info("epoch: {}, batch: {}, loss: {}".format(
                        epoch_id, batch_id, np_probs_float))

633 634
                if batch_id % int(
                        self.train_config.eval_iter) == 0 and batch_id != 0:
C
ceci3 已提交
635 636 637
                    if self.eval_function is not None:

                        # GMP pruner step 3: update params before summrizing sparsity, saving model or evaluation. 
C
ceci3 已提交
638
                        if 'unstructure' in strategy:
C
ceci3 已提交
639 640 641 642 643 644 645 646
                            self._pruner.update_params()

                        metric = self.eval_function(
                            self._exe, test_program_info.program,
                            test_program_info.feed_target_names,
                            test_program_info.fetch_targets)

                        _logger.info(
C
ceci3 已提交
647 648
                            "epoch: {}, batch: {} metric of compressed model is: {}, best metric of compressed model is {}".
                            format(epoch_id, batch_id, metric, best_metric))
C
ceci3 已提交
649 650 651
                        if metric > best_metric:
                            paddle.static.save(
                                program=test_program_info.program._program,
W
whs 已提交
652
                                model_path=os.path.join(self.tmp_dir,
C
ceci3 已提交
653
                                                        'best_model'))
C
ceci3 已提交
654 655 656 657 658 659
                            best_metric = metric
                            if self.metric_before_compressed is not None and float(
                                    abs(best_metric -
                                        self.metric_before_compressed)
                            ) / self.metric_before_compressed <= 0.005:
                                break
C
ceci3 已提交
660 661
                        if self.train_config.target_metric is not None:
                            if metric > float(self.train_config.target_metric):
C
ceci3 已提交
662
                                break
C
ceci3 已提交
663 664

                    else:
665 666 667
                        _logger.warning(
                            "Not set eval function, so unable to test accuracy performance."
                        )
G
Guanghua Yu 已提交
668 669
                if self.train_config.train_iter and batch_id >= self.train_config.train_iter:
                    break
C
ceci3 已提交
670

Z
zhouzj 已提交
671 672 673
        if 'unstructure' in self._strategy or self.train_config.sparse_model:
            self._pruner.update_params()

C
ceci3 已提交
674 675
        return test_program_info

C
ceci3 已提交
676
    def _save_model(self, test_program_info, strategy, strategy_idx):
C
ceci3 已提交
677 678 679
        test_program = test_program_info.program._program if isinstance(
            test_program_info.program,
            paddle.static.CompiledProgram) else test_program_info.program
C
ceci3 已提交
680

W
whs 已提交
681
        if os.path.exists(os.path.join(self.tmp_dir, 'best_model.pdparams')):
682
            paddle.static.load(test_program,
W
whs 已提交
683 684 685 686
                               os.path.join(self.tmp_dir, 'best_model'))
            os.remove(os.path.join(self.tmp_dir, 'best_model.pdmodel'))
            os.remove(os.path.join(self.tmp_dir, 'best_model.pdopt'))
            os.remove(os.path.join(self.tmp_dir, 'best_model.pdparams'))
C
ceci3 已提交
687 688

        if 'qat' in strategy:
G
Guanghua Yu 已提交
689
            test_program, int8_program = convert(test_program, self._places, self._quant_config, \
C
ceci3 已提交
690 691 692
                                          scope=paddle.static.global_scope(), \
                                          save_int8=True)

W
whs 已提交
693
        model_dir = os.path.join(self.tmp_dir,
C
ceci3 已提交
694 695 696 697 698 699 700
                                 'strategy_{}'.format(str(strategy_idx + 1)))
        if not os.path.exists(model_dir):
            os.makedirs(model_dir)
        paddle.fluid.io.save_inference_model(
            dirname=str(model_dir),
            feeded_var_names=test_program_info.feed_target_names,
            target_vars=test_program_info.fetch_targets,
C
ceci3 已提交
701
            executor=self._exe,
702
            main_program=test_program,
C
ceci3 已提交
703 704
            model_filename=self.model_filename,
            params_filename=self.params_filename)