test_autoprune.py 3.4 KB
Newer Older
Y
yukavio 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2020  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
sys.path.append("../")
import unittest
import paddle.fluid as fluid
from paddleslim.prune import Pruner
from paddleslim.prune import AutoPruner
20
from static_case import StaticCase
Y
yukavio 已提交
21 22 23
from layers import conv_bn_layer


24
class TestPrune(StaticCase):
Y
yukavio 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
    def test_prune(self):
        main_program = fluid.Program()
        startup_program = fluid.Program()
        #   X       X              O       X              O
        # conv1-->conv2-->sum1-->conv3-->conv4-->sum2-->conv5-->conv6
        #     |            ^ |                    ^
        #     |____________| |____________________|
        #
        # X: prune output channels
        # O: prune input channels
        with fluid.program_guard(main_program, startup_program):
            input = fluid.data(name="image", shape=[None, 3, 16, 16])
            conv1 = conv_bn_layer(input, 8, 3, "conv1")
            conv2 = conv_bn_layer(conv1, 8, 3, "conv2")
            sum1 = conv1 + conv2
            conv3 = conv_bn_layer(sum1, 8, 3, "conv3")
            conv4 = conv_bn_layer(conv3, 8, 3, "conv4")
            sum2 = conv4 + sum1
            conv5 = conv_bn_layer(sum2, 8, 3, "conv5")
            conv6 = conv_bn_layer(conv5, 8, 3, "conv6")

        shapes = {}
        params = []
        for param in main_program.global_block().all_parameters():
            shapes[param.name] = param.shape
            if 'weights' in param.name:
                params.append(param.name)

        val_program = fluid.default_main_program().clone(for_test=True)
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        scope = fluid.Scope()
        exe.run(startup_program, scope=scope)

        pruner = AutoPruner(
            val_program,
            fluid.global_scope(),
            place,
            params=params,
            init_ratios=[0.33] * len(params),
            pruned_flops=0.5,
            pruned_latency=None,
            server_addr=("", 0),
            init_temperature=100,
            reduce_rate=0.85,
            max_try_times=300,
            max_client_num=10,
            search_steps=100,
            max_ratios=0.9,
            min_ratios=0.,
            is_server=True,
            key="auto_pruner")
        baseratio = None
        lastratio = None
        for i in range(10):
            pruned_program, pruned_val_program = pruner.prune(
                fluid.default_main_program(), val_program)
            score = 0.2
            pruner.reward(score)
            if i == 0:
                baseratio = pruner._current_ratios
            if i == 9:
                lastratio = pruner._current_ratios
        changed = False
        for i in range(len(baseratio)):
            if baseratio[i] != lastratio[i]:
                changed = True
        self.assertTrue(changed == True)


if __name__ == '__main__':
    unittest.main()