analysis.py 6.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import sys
import numpy as np
import argparse
from tqdm import tqdm
import paddle
from ppdet.core.workspace import load_config, merge_config
from ppdet.core.workspace import create
from ppdet.metrics import COCOMetric, VOCMetric, KeyPointTopDownCOCOEval
from keypoint_utils import keypoint_post_process
from post_process import PPYOLOEPostProcess
from paddleslim.quant.analysis import AnalysisQuant


def argsparser():
    parser = argparse.ArgumentParser(description=__doc__)
    parser.add_argument(
        '--config_path',
        type=str,
        default=None,
        help="path of analysis config.",
        required=True)
    parser.add_argument(
        '--devices',
        type=str,
        default='gpu',
        help="which device used to compress.")
    return parser


def reader_wrapper(reader, input_list):
    def gen():
        for data in reader:
            in_dict = {}
            if isinstance(input_list, list):
                for input_name in input_list:
                    in_dict[input_name] = data[input_name]
            elif isinstance(input_list, dict):
                for input_name in input_list.keys():
                    in_dict[input_list[input_name]] = data[input_name]
            yield in_dict

    return gen


def convert_numpy_data(data, metric):
    data_all = {}
    data_all = {k: np.array(v) for k, v in data.items()}
    if isinstance(metric, VOCMetric):
        for k, v in data_all.items():
            if not isinstance(v[0], np.ndarray):
                tmp_list = []
                for t in v:
                    tmp_list.append(np.array(t))
                data_all[k] = np.array(tmp_list)
    else:
        data_all = {k: np.array(v) for k, v in data.items()}
    return data_all


def eval_function(exe, compiled_test_program, test_feed_names, test_fetch_list):
    with tqdm(
            total=len(val_loader),
            bar_format='Evaluation stage, Run batch:|{bar}| {n_fmt}/{total_fmt}',
            ncols=80) as t:
        for batch_id, data in enumerate(val_loader):
            data_all = convert_numpy_data(data, metric)
            data_input = {}
            for k, v in data.items():
                if isinstance(config['input_list'], list):
                    if k in test_feed_names:
                        data_input[k] = np.array(v)
                elif isinstance(config['input_list'], dict):
                    if k in config['input_list'].keys():
                        data_input[config['input_list'][k]] = np.array(v)
            outs = exe.run(compiled_test_program,
                           feed=data_input,
                           fetch_list=test_fetch_list,
                           return_numpy=False)
            res = {}
            if 'arch' in config and config['arch'] == 'keypoint':
                res = keypoint_post_process(data, data_input, exe,
                                            compiled_test_program,
                                            test_fetch_list, outs)
            if 'arch' in config and config['arch'] == 'PPYOLOE':
                postprocess = PPYOLOEPostProcess(
                    score_threshold=0.01, nms_threshold=0.6)
                res = postprocess(np.array(outs[0]), data_all['scale_factor'])
            else:
                for out in outs:
                    v = np.array(out)
                    if len(v.shape) > 1:
                        res['bbox'] = v
                    else:
                        res['bbox_num'] = v

            metric.update(data_all, res)
            t.update()

    metric.accumulate()
    metric.log()
    map_res = metric.get_results()
    metric.reset()
    map_key = 'keypoint' if 'arch' in config and config[
        'arch'] == 'keypoint' else 'bbox'
    return map_res[map_key][0]


def main():

    global config
    config = load_config(FLAGS.config_path)
    ptq_config = config['PTQ']

    data_loader = create('EvalReader')(config['EvalDataset'],
                                       config['worker_num'],
                                       return_list=True)
    data_loader = reader_wrapper(data_loader, config['input_list'])

    dataset = config['EvalDataset']
    global val_loader
    _eval_batch_sampler = paddle.io.BatchSampler(
        dataset, batch_size=config['EvalReader']['batch_size'])
    val_loader = create('EvalReader')(dataset,
                                      config['worker_num'],
                                      batch_sampler=_eval_batch_sampler,
                                      return_list=True)
    global metric
    if config['metric'] == 'COCO':
        clsid2catid = {v: k for k, v in dataset.catid2clsid.items()}
        anno_file = dataset.get_anno()
        metric = COCOMetric(
            anno_file=anno_file, clsid2catid=clsid2catid, IouType='bbox')
    elif config['metric'] == 'VOC':
        metric = VOCMetric(
            label_list=dataset.get_label_list(),
            class_num=config['num_classes'],
            map_type=config['map_type'])
    elif config['metric'] == 'KeyPointTopDownCOCOEval':
        anno_file = dataset.get_anno()
        metric = KeyPointTopDownCOCOEval(anno_file,
                                         len(dataset), 17, 'output_eval')
    else:
        raise ValueError("metric currently only supports COCO and VOC.")

    analyzer = AnalysisQuant(
        model_dir=config["model_dir"],
        model_filename=config["model_filename"],
        params_filename=config["params_filename"],
        eval_function=eval_function,
        data_loader=data_loader,
        save_dir=config['save_dir'],
        ptq_config=ptq_config)
    analyzer.analysis()


if __name__ == '__main__':
    paddle.enable_static()
    parser = argsparser()
    FLAGS = parser.parse_args()

    assert FLAGS.devices in ['cpu', 'gpu', 'xpu', 'npu']
    paddle.set_device(FLAGS.devices)

    main()