analysis.py 5.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import sys
import numpy as np
import argparse
import paddle
from tqdm import tqdm
21
from post_process import YOLOPostProcess, coco_metric
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
from dataset import COCOValDataset, COCOTrainDataset
from paddleslim.common import load_config, load_onnx_model
from paddleslim.quant.analysis import AnalysisQuant


def argsparser():
    parser = argparse.ArgumentParser(description=__doc__)
    parser.add_argument(
        '--config_path',
        type=str,
        default=None,
        help="path of analysis config.",
        required=True)
    parser.add_argument(
        '--devices',
        type=str,
        default='gpu',
        help="which device used to compress.")
    return parser


def eval_function(exe, compiled_test_program, test_feed_names, test_fetch_list):
    bboxes_list, bbox_nums_list, image_id_list = [], [], []
    with tqdm(
            total=len(val_loader),
            bar_format='Evaluation stage, Run batch:|{bar}| {n_fmt}/{total_fmt}',
            ncols=80) as t:
        for data in val_loader:
            data_all = {k: np.array(v) for k, v in data.items()}
            outs = exe.run(compiled_test_program,
                           feed={test_feed_names[0]: data_all['image']},
                           fetch_list=test_fetch_list,
                           return_numpy=False)
            res = {}
56
            postprocess = YOLOPostProcess(
57 58 59 60 61 62 63 64 65 66 67 68 69 70
                score_threshold=0.001, nms_threshold=0.65, multi_label=True)
            res = postprocess(np.array(outs[0]), data_all['scale_factor'])
            bboxes_list.append(res['bbox'])
            bbox_nums_list.append(res['bbox_num'])
            image_id_list.append(np.array(data_all['im_id']))
            t.update()
    map_res = coco_metric(anno_file, bboxes_list, bbox_nums_list, image_id_list)
    return map_res[0]


def main():

    global config
    config = load_config(FLAGS.config_path)
71
    ptq_config = config['PTQ']
72

73 74
    input_name = 'x2paddle_image_arrays' if config[
        'arch'] == 'YOLOv6' else 'x2paddle_images'
75 76

    # val dataset is sufficient for PTQ
77 78 79
    dataset = COCOTrainDataset(
        dataset_dir=config['dataset_dir'],
        image_dir=config['val_image_dir'],
80 81
        anno_path=config['val_anno_path'],
        input_name=input_name)
82 83 84 85
    data_loader = paddle.io.DataLoader(
        dataset, batch_size=1, shuffle=True, drop_last=True, num_workers=0)

    global val_loader
86
    # fast_val_anno_path, such as annotation path of several pictures can accelerate analysis
87 88 89
    dataset = COCOValDataset(
        dataset_dir=config['dataset_dir'],
        image_dir=config['val_image_dir'],
90 91
        anno_path=config['fast_val_anno_path'] if
        config['fast_val_anno_path'] is not None else config['val_anno_path'])
92 93 94 95 96 97 98 99 100 101 102 103 104 105
    global anno_file
    anno_file = dataset.ann_file
    val_loader = paddle.io.DataLoader(
        dataset, batch_size=1, shuffle=False, drop_last=False, num_workers=0)

    load_onnx_model(config["model_dir"])
    inference_model_path = config["model_dir"].rstrip().rstrip(
        '.onnx') + '_infer'
    analyzer = AnalysisQuant(
        model_dir=inference_model_path,
        model_filename='model.pdmodel',
        params_filename='model.pdiparams',
        eval_function=eval_function,
        data_loader=data_loader,
106 107
        save_dir=config['save_dir'],
        ptq_config=ptq_config)
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131

    # plot the boxplot of activations of quantizable weights
    analyzer.plot_activation_distribution()

    # get the rank of sensitivity of each quantized layer
    # plot the histogram plot of best and worst activations and weights if plot_hist is True
    analyzer.compute_quant_sensitivity(plot_hist=config['plot_hist'])

    if config['get_target_quant_model']:
        if config['fast_val_anno_path'] is not None:
            # change fast_val_loader to full val_loader
            dataset = COCOValDataset(
                dataset_dir=config['dataset_dir'],
                image_dir=config['val_image_dir'],
                anno_path=config['val_anno_path'])
            anno_file = dataset.ann_file
            val_loader = paddle.io.DataLoader(
                dataset,
                batch_size=1,
                shuffle=False,
                drop_last=False,
                num_workers=0)
        # get the quantized model that satisfies target metric you set
        analyzer.get_target_quant_model(config['target_metric'])
132 133 134 135 136 137 138 139 140 141 142


if __name__ == '__main__':
    paddle.enable_static()
    parser = argsparser()
    FLAGS = parser.parse_args()

    assert FLAGS.devices in ['cpu', 'gpu', 'xpu', 'npu']
    paddle.set_device(FLAGS.devices)

    main()