prune_walker.py 19.7 KB
Newer Older
W
whs 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
# Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
import numpy as np
from ..core import Registry
from ..common import get_logger

__all__ = ["PRUNE_WORKER", "conv2d"]

_logger = get_logger(__name__, level=logging.INFO)

PRUNE_WORKER = Registry('prune_worker')


class PruneWorker(object):
    def __init__(self, op, pruned_params=[], visited={}):
        """
        A wrapper of operator used to infer the information of all the related variables.

        Args:
            op(Operator): The operator to be pruned.
            pruned_params(list): The list to store the information of pruning that infered by walker.
            visited(dict): The auxiliary dict to record the visited operators and variables. The key is a encoded string of operator id and variable name.

        Return: A instance of PruneWalker.
        """
        self.op = op
        self.pruned_params = pruned_params
        self.visited = visited

    def prune(self, var, pruned_axis, pruned_idx):
        """ 
        Infer the shape of variables related with current operator, predecessor and successor. 
        It will search the graph to find all varibles related with `var` and record the information of pruning.
        Args:
            var(Variable): The root variable of searching. It can be the input or output of current operator.
            pruned_axis(int): The axis to be pruned of root variable.
            pruned_idx(int): The indexes to be pruned in `pruned_axis` of root variable.
        """
W
whs 已提交
52 53 54 55
        if self._visit(var, pruned_axis):
            self._prune(var, pruned_axis, pruned_idx)

    def _visit(self, var, pruned_axis):
W
whs 已提交
56 57 58 59
        key = "_".join([str(self.op.idx()), var.name()])
        if pruned_axis not in self.visited:
            self.visited[pruned_axis] = {}
        if key in self.visited[pruned_axis]:
W
whs 已提交
60
            return False
W
whs 已提交
61 62
        else:
            self.visited[pruned_axis][key] = True
W
whs 已提交
63
            return True
W
whs 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89

    def _prune(self, var, pruned_axis, pruned_idx):
        raise NotImplementedError('Abstract method.')

    def _prune_op(self, op, var, pruned_axis, pruned_idx, visited=None):
        if op.type().endswith("_grad"):
            return
        if visited is not None:
            self.visited = visited
        cls = PRUNE_WORKER.get(op.type())
        assert cls is not None, "The walker of {} is not registered.".format(
            op.type())
        _logger.debug("\nfrom: {}\nto: {}\npruned_axis: {}; var: {}".format(
            self.op, op, pruned_axis, var.name()))
        walker = cls(op,
                     pruned_params=self.pruned_params,
                     visited=self.visited)
        walker.prune(var, pruned_axis, pruned_idx)


@PRUNE_WORKER.register
class conv2d(PruneWorker):
    def __init__(self, op, pruned_params, visited={}):
        super(conv2d, self).__init__(op, pruned_params, visited)

    def _prune(self, var, pruned_axis, pruned_idx):
W
whs 已提交
90
        data_format = self.op.attr("data_format")
W
whs 已提交
91 92 93 94 95 96 97
        channel_axis = 1
        if data_format == "NHWC":
            channel_axis = 3
        if var in self.op.inputs("Input"):
            assert pruned_axis == channel_axis, "The Input of conv2d can only be pruned at channel axis, but got {}; var: {}".format(
                pruned_axis, var.name())
            filter_var = self.op.inputs("Filter")[0]
W
whs 已提交
98
            self._visit(filter_var, 1)
W
whs 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
            self.pruned_params.append((filter_var, 1, pruned_idx))
            for op in filter_var.outputs():
                self._prune_op(op, filter_var, 1, pruned_idx)

        elif var in self.op.inputs("Filter"):
            assert pruned_axis in [0, 1]

            self.pruned_params.append((var, pruned_axis, pruned_idx))

            for op in var.outputs():
                self._prune_op(op, var, pruned_axis, pruned_idx)

            if pruned_axis == 0:
                if len(self.op.inputs("Bias")) > 0:
                    self.pruned_params.append(
                        (self.op.inputs("Bias"), channel_axis, pruned_idx))
                output_var = self.op.outputs("Output")[0]
W
whs 已提交
116
                self._visit(output_var, channel_axis)
W
whs 已提交
117 118 119 120 121 122
                next_ops = output_var.outputs()
                for op in next_ops:
                    self._prune_op(op, output_var, channel_axis, pruned_idx)

            elif pruned_axis == 1:
                input_var = self.op.inputs("Input")[0]
W
whs 已提交
123
                self._visit(input_var, channel_axis)
W
whs 已提交
124 125 126 127 128 129 130 131
                pre_ops = input_var.inputs()
                for op in pre_ops:
                    self._prune_op(op, input_var, channel_axis, pruned_idx)
        elif var in self.op.outputs("Output"):
            assert pruned_axis == channel_axis, "pruned_axis: {}; var: {}".format(
                pruned_axis, var.name())

            filter_var = self.op.inputs("Filter")[0]
W
whs 已提交
132
            self._visit(filter_var, 0)
W
whs 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160

            self.pruned_params.append((filter_var, 0, pruned_idx))

            for op in filter_var.outputs():
                self._prune_op(op, filter_var, 0, pruned_idx)

            if len(self.op.inputs("Bias")) > 0:
                self.pruned_params.append(
                    (self.op.inputs("Bias")[0], channel_axis, pruned_idx))

            output_var = self.op.outputs("Output")[0]
            next_ops = output_var.outputs()
            for op in next_ops:
                self._prune_op(op, output_var, channel_axis, pruned_idx)


@PRUNE_WORKER.register
class batch_norm(PruneWorker):
    def __init__(self, op, pruned_params, visited):
        super(batch_norm, self).__init__(op, pruned_params, visited)

    def _prune(self, var, pruned_axis, pruned_idx):
        if (var not in self.op.outputs("Y")) and (
                var not in self.op.inputs("X")):
            return

        if var in self.op.outputs("Y"):
            in_var = self.op.inputs("X")[0]
W
whs 已提交
161
            self._visit(in_var, pruned_axis)
W
whs 已提交
162 163 164 165 166 167 168 169 170 171 172
            pre_ops = in_var.inputs()
            for op in pre_ops:
                self._prune_op(op, in_var, pruned_axis, pruned_idx)

        for param in ["Scale", "Bias", "Mean", "Variance"]:
            param_var = self.op.inputs(param)[0]
            for op in param_var.outputs():
                self._prune_op(op, param_var, 0, pruned_idx)
            self.pruned_params.append((param_var, 0, pruned_idx))

        out_var = self.op.outputs("Y")[0]
W
whs 已提交
173
        self._visit(out_var, pruned_axis)
W
whs 已提交
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
        next_ops = out_var.outputs()
        for op in next_ops:
            self._prune_op(op, out_var, pruned_axis, pruned_idx)


class elementwise_op(PruneWorker):
    def __init__(self, op, pruned_params, visited):
        super(elementwise_op, self).__init__(op, pruned_params, visited)

    def _prune(self, var, pruned_axis, pruned_idx):
        axis = self.op.attr("axis")
        if axis == -1:  # TODO
            axis = 0
        if var in self.op.outputs("Out"):
            for name in ["X", "Y"]:
                actual_axis = pruned_axis
                if name == "Y":
                    actual_axis = pruned_axis - axis
                in_var = self.op.inputs(name)[0]
                pre_ops = in_var.inputs()
                for op in pre_ops:
                    self._prune_op(op, in_var, actual_axis, pruned_idx)

        else:
            if var in self.op.inputs("X"):
                in_var = self.op.inputs("Y")[0]

                if in_var.is_parameter():
                    self.pruned_params.append(
                        (in_var, pruned_axis - axis, pruned_idx))
                pre_ops = in_var.inputs()
                for op in pre_ops:
                    self._prune_op(op, in_var, pruned_axis - axis, pruned_idx)
            elif var in self.op.inputs("Y"):
                in_var = self.op.inputs("X")[0]
                pre_ops = in_var.inputs()
                pruned_axis = pruned_axis + axis
                for op in pre_ops:
                    self._prune_op(op, in_var, pruned_axis, pruned_idx)

        out_var = self.op.outputs("Out")[0]
W
whs 已提交
215
        self._visit(out_var, pruned_axis)
W
whs 已提交
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
        next_ops = out_var.outputs()
        for op in next_ops:
            self._prune_op(op, out_var, pruned_axis, pruned_idx)


@PRUNE_WORKER.register
class elementwise_add(elementwise_op):
    def __init__(self, op, pruned_params, visited):
        super(elementwise_add, self).__init__(op, pruned_params, visited)


@PRUNE_WORKER.register
class elementwise_sub(elementwise_op):
    def __init__(self, op, pruned_params, visited):
        super(elementwise_sub, self).__init__(op, pruned_params, visited)


@PRUNE_WORKER.register
class elementwise_mul(elementwise_op):
    def __init__(self, op, pruned_params, visited):
        super(elementwise_mul, self).__init__(op, pruned_params, visited)


class activation(PruneWorker):
    def __init__(self, op, pruned_params, visited):
        super(activation, self).__init__(op, pruned_params, visited)
        self.input_name = "X"
        self.output_name = "Out"

    def _prune(self, var, pruned_axis, pruned_idx):
        if var in self.op.outputs(self.output_name):
            in_var = self.op.inputs(self.input_name)[0]
            pre_ops = in_var.inputs()
            for op in pre_ops:
                self._prune_op(op, in_var, pruned_axis, pruned_idx)

        out_var = self.op.outputs(self.output_name)[0]
W
whs 已提交
253
        self._visit(out_var, pruned_axis)
W
whs 已提交
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
        next_ops = out_var.outputs()
        for op in next_ops:
            self._prune_op(op, out_var, pruned_axis, pruned_idx)


@PRUNE_WORKER.register
class uniform_random_batch_size_like(activation):
    def __init__(self, op, pruned_params, visited):
        super(uniform_random_batch_size_like, self).__init__(op, pruned_params,
                                                             visited)
        self.input_name = "Input"
        self.output_name = "Out"


@PRUNE_WORKER.register
class bilinear_interp(activation):
    def __init__(self, op, pruned_params, visited):
        super(bilinear_interp, self).__init__(op, pruned_params, visited)


@PRUNE_WORKER.register
class relu(activation):
    def __init__(self, op, pruned_params, visited):
        super(relu, self).__init__(op, pruned_params, visited)


@PRUNE_WORKER.register
class floor(activation):
    def __init__(self, op, pruned_params, visited):
        super(floor, self).__init__(op, pruned_params, visited)


@PRUNE_WORKER.register
class relu6(activation):
    def __init__(self, op, pruned_params, visited):
        super(relu6, self).__init__(op, pruned_params, visited)


@PRUNE_WORKER.register
class pool2d(activation):
    def __init__(self, op, pruned_params, visited):
        super(pool2d, self).__init__(op, pruned_params, visited)


@PRUNE_WORKER.register
class sum(PruneWorker):
    def __init__(self, op, pruned_params, visited):
        super(sum, self).__init__(op, pruned_params, visited)

    def _prune(self, var, pruned_axis, pruned_idx):
        if var in self.op.outputs("Out"):
            for in_var in self.op.inputs("X"):
                pre_ops = in_var.inputs()
                for op in pre_ops:
                    self._prune_op(op, in_var, pruned_axis, pruned_idx)
        elif var in self.op.inputs("X"):
            for in_var in self.op.inputs("X"):
                if in_var != var:
                    pre_ops = in_var.inputs()
                    for op in pre_ops:
                        self._prune_op(op, in_var, pruned_axis, pruned_idx)
        out_var = self.op.outputs("Out")[0]
W
whs 已提交
316
        self._visit(out_var, pruned_axis)
W
whs 已提交
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
        next_ops = out_var.outputs()
        for op in next_ops:
            self._prune_op(op, out_var, pruned_axis, pruned_idx)


@PRUNE_WORKER.register
class concat(PruneWorker):
    def __init__(self, op, pruned_params, visited):
        super(concat, self).__init__(op, pruned_params, visited)

    def _prune(self, var, pruned_axis, pruned_idx):
        idx = []
        axis = self.op.attr("axis")
        if var in self.op.outputs("Out"):
            start = 0
            if axis == pruned_axis:
                for _, in_var in enumerate(self.op.inputs("X")):
                    idx = []
                    for i in pruned_idx:
                        r_idx = i - start
                        if r_idx < in_var.shape()[pruned_axis] and r_idx >= 0:
                            idx.append(r_idx)
                    start += in_var.shape()[pruned_axis]

                    pre_ops = in_var.inputs()
                    for op in pre_ops:
                        self._prune_op(op, in_var, pruned_axis, idx)
                idx = pruned_idx[:]
            else:
                for _, in_var in enumerate(self.op.inputs("X")):
                    pre_ops = in_var.inputs()
                    for op in pre_ops:
                        self._prune_op(op, in_var, pruned_axis, pruned_idx)
        elif var in self.op.inputs("X"):
            if axis == pruned_axis:
                idx = []
                start = 0
                for v in self.op.inputs("X"):
                    if v.name() == var.name():
                        idx = [i + start for i in pruned_idx]
                    else:
                        start += v.shape()[pruned_axis]

                out_var = self.op.outputs("Out")[0]
W
whs 已提交
361
                self._visit(out_var, pruned_axis)
W
whs 已提交
362 363 364 365 366 367 368 369
                next_ops = out_var.outputs()
                for op in next_ops:
                    self._prune_op(op, out_var, pruned_axis, idx, visited={})
            else:
                for v in self.op.inputs("X"):
                    for op in v.inputs():
                        self._prune_op(op, v, pruned_axis, pruned_idx)
                out_var = self.op.outputs("Out")[0]
W
whs 已提交
370
                self._visit(out_var, pruned_axis)
W
whs 已提交
371 372 373 374 375 376 377 378 379 380 381
                next_ops = out_var.outputs()
                for op in next_ops:
                    self._prune_op(op, out_var, pruned_axis, pruned_idx)


@PRUNE_WORKER.register
class depthwise_conv2d(PruneWorker):
    def __init__(self, op, pruned_params, visited={}):
        super(depthwise_conv2d, self).__init__(op, pruned_params, visited)

    def _prune(self, var, pruned_axis, pruned_idx):
W
whs 已提交
382
        data_format = self.op.attr("data_format")
W
whs 已提交
383 384 385 386 387 388 389 390 391
        channel_axis = 1
        if data_format == "NHWC":
            channel_axis = 3
        if var in self.op.inputs("Input"):
            assert pruned_axis == channel_axis, "The Input of conv2d can only be pruned at channel axis, but got {}".format(
                pruned_axis)

            filter_var = self.op.inputs("Filter")[0]
            self.pruned_params.append((filter_var, 0, pruned_idx))
W
whs 已提交
392
            self._visit(filter_var, 0)
W
whs 已提交
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419

            new_groups = filter_var.shape()[0] - len(pruned_idx)
            self.op.set_attr("groups", new_groups)

            for op in filter_var.outputs():
                self._prune_op(op, filter_var, 0, pruned_idx)

            output_var = self.op.outputs("Output")[0]
            next_ops = output_var.outputs()
            for op in next_ops:
                self._prune_op(op, output_var, channel_axis, pruned_idx)

        elif var in self.op.inputs("Filter"):
            assert pruned_axis in [0]
            if pruned_axis == 0:
                if len(self.op.inputs("Bias")) > 0:
                    self.pruned_params.append(
                        (self.op.inputs("Bias"), channel_axis, pruned_idx))

                self.pruned_params.append((var, 0, pruned_idx))
                new_groups = var.shape()[0] - len(pruned_idx)
                self.op.set_attr("groups", new_groups)

                for op in var.outputs():
                    self._prune_op(op, var, 0, pruned_idx)

                output_var = self.op.outputs("Output")[0]
W
whs 已提交
420
                self._visit(output_var, channel_axis)
W
whs 已提交
421 422 423 424 425 426 427 428 429
                next_ops = output_var.outputs()
                for op in next_ops:
                    self._prune_op(op, output_var, channel_axis, pruned_idx)
            for op in var.outputs():
                self._prune_op(op, var, pruned_axis, pruned_idx)
        elif var in self.op.outputs("Output"):
            assert pruned_axis == channel_axis
            filter_var = self.op.inputs("Filter")[0]
            self.pruned_params.append((filter_var, 0, pruned_idx))
W
whs 已提交
430
            self._visit(filter_var, 0)
W
whs 已提交
431 432 433 434 435 436 437 438 439 440 441 442

            new_groups = filter_var.shape()[0] - len(pruned_idx)
            op.set_attr("groups", new_groups)

            for op in filter_var.outputs():
                self._prune_op(op, filter_var, 0, pruned_idx)

            if len(self.op.inputs("Bias")) > 0:
                self.pruned_params.append(
                    (self.op.inputs("Bias")[0], channel_axis, pruned_idx))

            in_var = self.op.inputs("Input")[0]
W
whs 已提交
443
            self._visit(in_var, channel_axis)
W
whs 已提交
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
            pre_ops = in_var.inputs()
            for op in pre_ops:
                self._prune_op(op, in_var, channel_axis, pruned_idx)

            output_var = self.op.outputs("Output")[0]
            next_ops = output_var.outputs()
            for op in next_ops:
                self._prune_op(op, output_var, channel_axis, pruned_idx)


@PRUNE_WORKER.register
class mul(PruneWorker):
    def __init__(self, op, pruned_params, visited={}):
        super(mul, self).__init__(op, pruned_params, visited)

    def _prune(self, var, pruned_axis, pruned_idx):
        if var in self.op.inputs("X"):
            assert pruned_axis == 1, "The Input of conv2d can only be pruned at axis 1, but got {}".format(
                pruned_axis)
            idx = []
            feature_map_size = var.shape()[2] * var.shape()[3]
            range_idx = np.array(range(feature_map_size))
            for i in pruned_idx:
                idx += list(range_idx + i * feature_map_size)
            param_var = self.op.inputs("Y")[0]
            self.pruned_params.append((param_var, 0, idx))

            for op in param_var.outputs():
                self._prune_op(op, param_var, 0, pruned_idx)


@PRUNE_WORKER.register
class scale(PruneWorker):
    def __init__(self, op, pruned_params, visited={}):
        super(scale, self).__init__(op, pruned_params, visited)

    def _prune(self, var, pruned_axis, pruned_idx):
        if var in self.op.inputs("X"):
            out_var = self.op.outputs("Out")[0]
            for op in out_var.outputs():
                self._prune_op(op, out_var, pruned_axis, pruned_idx)
        elif var in self.op.outputs("Out"):
            in_var = self.op.inputs("X")[0]
            for op in in_var.inputs():
                self._prune_op(op, in_var, pruned_axis, pruned_idx)


@PRUNE_WORKER.register
class momentum(PruneWorker):
    def __init__(self, op, pruned_params, visited={}):
        super(momentum, self).__init__(op, pruned_params, visited)

    def _prune(self, var, pruned_axis, pruned_idx):
        if var in self.op.inputs("Param"):
            _logger.debug("pruning momentum, var:{}".format(var.name()))
            velocity_var = self.op.inputs("Velocity")[0]
            self.pruned_params.append((velocity_var, pruned_axis, pruned_idx))


@PRUNE_WORKER.register
class adam(PruneWorker):
    def __init__(self, op, pruned_params, visited={}):
        super(adam, self).__init__(op, pruned_params, visited)

    def _prune(self, var, pruned_axis, pruned_idx):
        if var in self.op.inputs("Param"):
            _logger.debug("pruning momentum, var:{}".format(var.name()))
            moment1_var = self.op.inputs("Moment1")[0]
            self.pruned_params.append((moment1_var, pruned_axis, pruned_idx))
            moment2_var = self.op.inputs("Moment2")[0]
            self.pruned_params.append((moment2_var, pruned_axis, pruned_idx))