mobilenetv1.py 9.3 KB
Newer Older
C
ceci3 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
# Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
from .search_space_base import SearchSpaceBase
from .base_layer import conv_bn_layer
from .search_space_registry import SEARCHSPACE

__all__ = ["MobileNetV1Space"]


@SEARCHSPACE.register
class MobileNetV1Space(SearchSpaceBase):
    def __init__(self,
                 input_size,
                 output_size,
                 block_num,
                 scale=1.0,
                 class_dim=1000):
        super(MobileNetV1Space, self).__init__(input_size, output_size,
C
ceci3 已提交
38 39
                                               block_num, block_mask)
        assert self.block_mask == None, 'MobileNetV1Space will use origin MobileNetV1 as seach space, so use input_size, output_size and block_num to search'
C
ceci3 已提交
40 41
        self.scale = scale
        self.class_dim = class_dim
C
ceci3 已提交
42
        # self.head_num means the channel of first convolution
C
ceci3 已提交
43
        self.head_num = np.array([3, 4, 8, 12, 16, 24, 32])  # 7
C
ceci3 已提交
44
        # self.filter_num1 ~ self.filtet_num9 means channel of the following convolution
C
ceci3 已提交
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
        self.filter_num1 = np.array([3, 4, 8, 12, 16, 24, 32, 48])  # 8
        self.filter_num2 = np.array([8, 12, 16, 24, 32, 48, 64, 80])  # 8
        self.filter_num3 = np.array(
            [16, 24, 32, 48, 64, 80, 96, 128, 144, 160])  #10
        self.filter_num4 = np.array(
            [24, 32, 48, 64, 80, 96, 128, 144, 160, 192])  #10
        self.filter_num5 = np.array(
            [32, 48, 64, 80, 96, 128, 144, 160, 192, 224, 256, 320])  #12
        self.filter_num6 = np.array(
            [64, 80, 96, 128, 144, 160, 192, 224, 256, 320, 384])  #11
        self.filter_num7 = np.array([
            64, 80, 96, 128, 144, 160, 192, 224, 256, 320, 384, 512, 1024, 1048
        ])  #14
        self.filter_num8 = np.array(
            [128, 144, 160, 192, 224, 256, 320, 384, 512, 576, 640, 704,
             768])  #13
        self.filter_num9 = np.array(
            [160, 192, 224, 256, 320, 384, 512, 640, 768, 832, 1024,
             1048])  #12
C
ceci3 已提交
64
        # self.k_size means kernel size
C
ceci3 已提交
65
        self.k_size = np.array([3, 5])  #2
C
ceci3 已提交
66
        # self.repeat means repeat_num in forth downsample 
C
ceci3 已提交
67 68 69 70 71 72 73 74 75 76
        self.repeat = np.array([1, 2, 3, 4, 5, 6])  #6

        assert self.block_num < 6, 'MobileNetV1: block number must less than 6, but receive block number is {}'.format(
            self.block_num)

    def init_tokens(self):
        """
        The initial token.
        The first one is the index of the first layers' channel in self.head_num,
        each line in the following represent the index of the [filter_num1, filter_num2, kernel_size]
C
ceci3 已提交
77
        and depth means repeat times for forth downsample
C
ceci3 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
        """
        # yapf: disable
        base_init_tokens = [6,  # 32
            6, 6, 0,  # 32, 64, 3
            6, 7, 0,  # 64, 128, 3
            7, 6, 0,  # 128, 128, 3
            6, 10, 0,  # 128, 256, 3
            10, 8, 0,  # 256, 256, 3
            8, 11, 0,  # 256, 512, 3
            4,  # depth 5
            11, 8, 0,  # 512, 512, 3
            8, 10, 0,  # 512, 1024, 3
            10, 10, 0]  # 1024, 1024, 3
        # yapf: enable
        if self.block_num < 5:
            self.token_len = 1 + (self.block_num * 2 - 1) * 3
        else:
            self.token_len = 2 + (self.block_num * 2 - 1) * 3
        return base_init_tokens[:self.token_len]

    def range_table(self):
        """
        Get range table of current search space, constrains the range of tokens.
        """
C
ceci3 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114
        # yapf: disable
        base_range_table = [len(self.head_num),
            len(self.filter_num1), len(self.filter_num2), len(self.k_size),
            len(self.filter_num2), len(self.filter_num3), len(self.k_size),
            len(self.filter_num3), len(self.filter_num4), len(self.k_size),
            len(self.filter_num4), len(self.filter_num5), len(self.k_size),
            len(self.filter_num5), len(self.filter_num6), len(self.k_size),
            len(self.filter_num6), len(self.filter_num7), len(self.k_size),
            len(self.repeat),
            len(self.filter_num7), len(self.filter_num8), len(self.k_size),
            len(self.filter_num8), len(self.filter_num9), len(self.k_size),
            len(self.filter_num9), len(self.filter_num9), len(self.k_size)]
        # yapf: enable
C
ceci3 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
        return base_range_table[:self.token_len]

    def token2arch(self, tokens=None):

        if tokens is None:
            tokens = self.tokens()

        bottleneck_param_list = []

        if self.block_num >= 1:
            # tokens[0] = 32
            # 32, 64
            bottleneck_param_list.append(
                (self.filter_num1[tokens[1]], self.filter_num2[tokens[2]], 1,
                 self.k_size[tokens[3]]))
        if self.block_num >= 2:
            # 64 128 128 128
            bottleneck_param_list.append(
                (self.filter_num2[tokens[4]], self.filter_num3[tokens[5]], 2,
                 self.k_size[tokens[6]]))
            bottleneck_param_list.append(
                (self.filter_num3[tokens[7]], self.filter_num4[tokens[8]], 1,
                 self.k_size[tokens[9]]))
        if self.block_num >= 3:
            # 128 256 256 256
            bottleneck_param_list.append(
                (self.filter_num4[tokens[10]], self.filter_num5[tokens[11]], 2,
                 self.k_size[tokens[12]]))
            bottleneck_param_list.append(
                (self.filter_num5[tokens[13]], self.filter_num6[tokens[14]], 1,
                 self.k_size[tokens[15]]))
        if self.block_num >= 4:
            # 256 512 (512 512) *  5
            bottleneck_param_list.append(
                (self.filter_num6[tokens[16]], self.filter_num7[tokens[17]], 2,
                 self.k_size[tokens[18]]))
            for i in range(self.repeat[tokens[19]]):
                bottleneck_param_list.append(
                    (self.filter_num7[tokens[20]],
                     self.filter_num8[tokens[21]], 1, self.k_size[tokens[22]]))
        if self.block_num >= 5:
            # 512 1024 1024 1024
            bottleneck_param_list.append(
                (self.filter_num8[tokens[23]], self.filter_num9[tokens[24]], 2,
                 self.k_size[tokens[25]]))
            bottleneck_param_list.append(
                (self.filter_num9[tokens[26]], self.filter_num9[tokens[27]], 1,
                 self.k_size[tokens[28]]))

        def net_arch(input):
            input = conv_bn_layer(
                input=input,
                filter_size=3,
                num_filters=self.head_num[tokens[0]],
                stride=2,
                name='mobilenetv1')

            for i, layer_setting in enumerate(bottleneck_param_list):
                filter_num1, filter_num2, stride, kernel_size = layer_setting
                input = self._depthwise_separable(
                    input=input,
                    num_filters1=filter_num1,
                    num_filters2=filter_num2,
                    num_groups=filter_num1,
                    stride=stride,
                    scale=self.scale,
                    kernel_size=kernel_size,
                    name='mobilenetv1_{}'.format(str(i + 1)))

            if self.output_size == 1:
                print('NOTE: if output_size is 1, add fc layer in the end!!!')
                input = fluid.layers.fc(
                    input=input,
                    size=self.class_dim,
                    param_attr=ParamAttr(name='mobilenetv2_fc_weights'),
                    bias_attr=ParamAttr(name='mobilenetv2_fc_offset'))
            else:
                assert self.output_size == input.shape[2], \
                          ("output_size must EQUAL to input_size / (2^block_num)."
                          "But receive input_size={}, output_size={}, block_num={}".format(
                          self.input_size, self.output_size, self.block_num))

            return input

        return net_arch

    def _depthwise_separable(self,
                             input,
                             num_filters1,
                             num_filters2,
                             num_groups,
                             stride,
                             scale,
                             kernel_size,
                             name=None):
        depthwise_conv = conv_bn_layer(
            input=input,
            filter_size=kernel_size,
            num_filters=int(num_filters1 * scale),
            stride=stride,
            num_groups=int(num_groups * scale),
            use_cudnn=False,
            name=name + '_dw')
        pointwise_conv = conv_bn_layer(
            input=depthwise_conv,
            filter_size=1,
            num_filters=int(num_filters2 * scale),
            stride=1,
            name=name + '_sep')

        return pointwise_conv