auto_strategy.py 9.4 KB
Newer Older
C
ceci3 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import logging
import platform
from ..common import get_logger
19
from .utils.predict import predict_compressed_model, with_variable_shape
C
ceci3 已提交
20 21 22 23 24 25 26 27
from .strategy_config import *

_logger = get_logger(__name__, level=logging.INFO)

__all__ = [
    "prepare_strategy", "create_strategy_config", "get_final_quant_config"
]

28
# config tester to test the loss of quant_post
C
ceci3 已提交
29
hpo_config_tester = {
C
ceci3 已提交
30
    "ptq_algo": ["avg", "mse", "KL"],
C
ceci3 已提交
31 32
    "weight_quantize_type": ['channel_wise_abs_max', 'abs_max'],
    "bias_correct": [False],
33
    "batch_num": [5],
C
ceci3 已提交
34 35 36
    "max_quant_count": 1,
}

37
# default hpo config
C
ceci3 已提交
38 39 40 41 42 43 44 45 46
default_hpo_config = {
    "ptq_algo": ["KL", "hist", "avg", "mse"],
    "weight_quantize_type": ['channel_wise_abs_max', 'abs_max'],
    "bias_correct": [True, False],
    "hist_percent": [0.98, 0.999],
    "batch_num": [10, 30],
    "max_quant_count": 20,
}

47
# default quant config, can be used by ptq&hpo and qat&distillation
C
ceci3 已提交
48
default_quant_config = {
C
ceci3 已提交
49 50
    'quantize_op_types':
    ['conv2d', 'depthwise_conv2d', 'mul', 'matmul', 'matmul_v2'],
C
ceci3 已提交
51
    'weight_bits': 8,
52 53
    'activation_bits': 8,
    "is_full_quantize": False,
C
ceci3 已提交
54 55
    "activation_quantize_type": 'moving_average_abs_max',
    "weight_quantize_type": 'channel_wise_abs_max',
56 57 58 59 60 61 62 63
    "not_quant_pattern": ["skip_quant"],
}

# default train config
DefaultTrainConfig = {
    "epochs": 1,
    "eval_iter": 500,
    "learning_rate": 0.0001,
C
ceci3 已提交
64 65 66 67
    "optimizer_builder": {
        "optimizer": {
            "type": "Momentum",
        },
68
        "weight_decay": 4.0e-05
C
ceci3 已提交
69
    }
C
ceci3 已提交
70 71 72 73 74 75 76
}

EXPERIENCE_STRATEGY_WITHOUT_LOSS = [
    'sparse_0.75_fp32', 'prune_0.3_fp32', 'origin_int8', 'sparse_0.75_int8',
    'prune_0.3_int8'
]
MAGIC_SPARSE_RATIO = 0.75
C
ceci3 已提交
77 78
### TODO: 0.02 threshold maybe not suitable, need to check
MAGIC_MAX_EMD_DISTANCE = 0.02
C
ceci3 已提交
79
MAGIC_MIN_EMD_DISTANCE = 0.01
C
ceci3 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92

DEFAULT_TRANSFORMER_STRATEGY = 'prune_0.25_int8'
DEFAULT_STRATEGY = 'origin_int8'
DEFAULT_QUANT_SPEEDUP = 0.7


def create_strategy_config(strategy_str, model_type):
    """ create config according to string"""
    tmp_s = strategy_str.split('_')
    configs = []

    dis_config = Distillation()
    if len(tmp_s) == 3:
C
ceci3 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
        ### TODO(ceci3): choose prune algo automatically
        if 'prune' in tmp_s[0]:
            ### default prune config
            default_prune_config = {
                'pruned_ratio': float(tmp_s[1]),
                'criterion': 'l1_norm'
            }
        else:
            ### default unstruture prune config
            default_prune_config = {
                'prune_strategy':
                'gmp',  ### default unstruture prune strategy is gmp
                'prune_mode': 'ratio',
                'pruned_ratio': float(tmp_s[1]),
                'local_sparsity': True,
                'prune_params_type': 'conv1x1_only'
            }
C
ceci3 已提交
110 111 112 113 114
        if model_type == 'transformer':
            tmp_s[0] = tmp_s[0].replace('prune', 'TransformerPrune')
            default_prune_config = {'pruned_ratio': float(tmp_s[1])}
        else:
            tmp_s[0] = tmp_s[0].replace('prune', 'Prune')
C
ceci3 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
        tmp_s[0] = tmp_s[0].replace('sparse', 'UnstructurePrune')
        prune_config = eval(tmp_s[0])(**default_prune_config)
        configs.append({tmp_s[0]: prune_config, 'Distillation': dis_config})

    ### TODO(ceci3): support skip some layer and full quant
    if tmp_s[-1] == 'int8':
        ### only platform is linux can use smac to do hyperparameter optimization
        ### choose quant_aware to do quantization in other platform
        if platform.system().lower() == 'linux':
            quant_config = Quantization(**default_quant_config)
            hpo_config = HyperParameterOptimization(**hpo_config_tester)
            configs.append({
                'Quantization': quant_config,
                'HyperParameterOptimization': hpo_config
            })
        else:
            quant_config = Quantization(**default_quant_config)
            dis_config = Distillation()
            configs.append({
                'Quantization': quant_config,
                'Distillation': dis_config
            })

    return configs


141 142 143 144 145 146
def create_train_config(strategy_str, model_type):
    # TDOD: support more strategy and model_type
    train_config = TrainConfig(**DefaultTrainConfig)
    return train_config


C
ceci3 已提交
147 148 149
def prepare_strategy(executor,
                     places,
                     model_dir,
C
ceci3 已提交
150 151 152 153 154 155 156 157
                     model_filename,
                     params_filename,
                     target_speedup=None,
                     deploy_hardware=None,
                     model_type=None):
    """ prepare compression config automatically """
    final_strategy = None

158 159
    ### use hardware latency tabel if support
    if not with_variable_shape(
160 161
            model_dir,
            model_filename=model_filename,
162 163 164
            params_filename=params_filename) and (
                deploy_hardware in TableLatencyPredictor.hardware_list):

C
ceci3 已提交
165
        compressed_time_dict = predict_compressed_model(
C
ceci3 已提交
166 167
            executor,
            places,
C
ceci3 已提交
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
            model_dir,
            model_filename,
            params_filename,
            hardware=deploy_hardware)

        baseline = compressed_time_dict['origin_fp32']
        speedup_ratio = {}
        for strategy, latency in compressed_time_dict.items():
            speedup_ratio[strategy] = 1.0 - float(latency) / baseline

        sorted_speedup_ratio = sorted(speedup_ratio.items(), key=lambda x: x[1])

        ### if target speedup is None, choose strategy by experience.
        if target_speedup is None:
            max_speedup = -1.0
            for s in EXPERIENCE_STRATEGY_WITHOUT_LOSS:
                if s not in speedup_ratio:
                    _logger.info(f"cannot get the speed up of strategy {s}")
                    continue

                if speedup_ratio[s] > max_speedup:
                    max_speedup = speedup_ratio[s]
                    final_strategy = s
        else:
            candidate_s = []
            pre_s = None
            for strategy, ratio in sorted_speedup_ratio:
                if abs(ratio - target_speedup) <= 0.1:
                    candidate_s.append(strategy)
                ### if there is no strategy satisfy target speedup
                ### choose the most recent speedup 
                if ratio > target_speedup and len(candidate_s) == 0:
                    if pre_s is not None:
                        candidate_s.append(pre_s)
                    candidate_s.append(strategy)
                pre_s = strategy

            if 'origin_int8' in candidate_s:
                final_strategy = candidate_s
            else:
                candidate_s = sorted(candidate_s, key=lambda x: x.split('_')[1])
                for c in candidate_s:
                    if c.startswith('sparse') and float(c.split('_')[
                            1]) <= MAGIC_SPARSE_RATIO:
                        final_strategy = c

                if final_strategy is None:
                    final_strategy = candidate_s[0]

    else:
        ### default speedup ratio of quantization is 70% compare to fp32
        ### TODO(ceci3): full quant or skip some layer later
        if target_speedup is None:
            if model_type == 'transformer':
                final_strategy = DEFAULT_TRANSFORMER_STRATEGY
            else:
                final_strategy = DEFAULT_STRATEGY

        elif target_speedup > DEFAULT_QUANT_SPEEDUP:
            prune_ratio = target_speedup - DEFAULT_QUANT_SPEEDUP
            if prune_ratio > 1.0:
                raise NotImplementedError(
                    "target_speedup {} is improper".format(target_speedup))
            final_strategy = 'prune_{}_int8'.format(str(prune_ratio))
        else:
            raise NotImplementedError("target_speedup {} is improper".format(
                target_speedup))

    strategy_config = create_strategy_config(final_strategy, model_type)
    return strategy_config


C
ceci3 已提交
240
def get_final_quant_config(ptq_loss):
C
ceci3 已提交
241
    """ transform quantization tester config to real quantization config """
C
ceci3 已提交
242 243 244 245 246
    ### if emd loss less than MAGIC_MIN_EMD_DISTANCE, final compress.
    if ptq_loss < MAGIC_MIN_EMD_DISTANCE:
        return None
    ### if emd loss less than MAGIC_MAX_EMD_DISTANCE, select quant_post & hpo.
    elif ptq_loss < MAGIC_MAX_EMD_DISTANCE:
C
ceci3 已提交
247 248 249 250 251 252 253
        quant_config = Quantization(**default_quant_config)
        hpo_config = HyperParameterOptimization(**default_hpo_config)
        configs = [{
            'Quantization': quant_config,
            'HyperParameterOptimization': hpo_config
        }]

C
ceci3 已提交
254 255
    ### if emd loss greater than MAGIC_MAX_EMD_DISTANCE, select qat & dist.
    else:
C
ceci3 已提交
256 257 258
        quant_config = Quantization(**default_quant_config)
        dis_config = Distillation()
        configs = [{'Quantization': quant_config, 'Distillation': dis_config}]
259
        _logger.info("Start Quantization and Distillation Training.")
C
ceci3 已提交
260 261 262 263 264 265

    return configs


if __name__ == '__main__':
    create_strategy_config('sparse_0.75_int8', 'transformer')