analysis.py 27.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import sys
import pickle
import copy
import logging
import csv
import numpy as np
import random
import tempfile
import paddle
from ..common import get_logger, load_inference_model
from paddle.fluid.framework import IrGraph
from paddle.framework import core

from paddle.static.quantization import PostTrainingQuantization
from .analysis_utils import *
_logger = get_logger(__name__, level=logging.INFO)

SUPPORT_WEIGHT_OP_DICT = {
    "conv2d": [["Input", "Filter"], ["Output"]],
    "depthwise_conv2d": [["Input", "Filter"], ["Output"]],
    "conv2d_transpose": [["Input", "Filter"], ["Output"]],
    "mul": [["X", "Y"], ["Out"]],
    "matmul": [["X", "Y"], ["Out"]],
    "matmul_v2": [["X", "Y"], ["Out"]]
}


class Analysis(object):
    def __init__(self,
                 float_model_dir,
                 quant_model_dir=None,
                 model_filename=None,
                 params_filename=None,
                 data_loader=None,
                 eval_function=None,
                 resume=False,
                 save_dir='analysis_results',
                 quant_config=None):
        '''
        Analysis provides to analysis the sensitivity of each op in the model.
        
        Args:
            float_model_dir(str, required): the path of fp32 model, it can also be '.onnx'
            quant_model_dir(str, optional):the path of quantized model, if is None, float model will be quantized by PTQ
            model_filename(str, optional): the model file name of the fp32 and quantized model
            params_filename(str, optional): the parameter file name of the fp32 and quantized model
            eval_function(function): eval function, define by yourself to return the metric of the inference program, can be used to judge the metric of quantized model.  (TODO: optional)
            data_loader(Python Generator, Paddle.io.DataLoader, optional): the
                Generator or Dataloader provides calibrate data, and it could
                return a batch every time
            save_dir(str, optional): the output dir that stores the analyzed information
            resume(bool, optional): When break off while ananlyzing, could resume analysis program and load already analyzed information.
            quant_config(dict, optional): the args that can initialize PostTrainingQuantization
        
        Examples:
        .. code-block:: python
       
        from paddleslim.quant.analysis import Analysis
        analyzer = Analysis(quant_model_dir=quant_model_dir)
        analyzer.metric_error_analyse()
          
        '''
        if model_filename is None:
            model_filename = 'model.pdmodel'
        if params_filename is None:
            params_filename = 'model.pdiparams'
        self.float_model_dir = float_model_dir
        self.quant_model_dir = quant_model_dir
        self.model_filename = model_filename
        self.params_filename = params_filename
        self.histogram_bins = 1000
        self.save_dir = save_dir
        self.checkpoint_name = os.path.join(save_dir, 'analysis_checkpoint.pkl')
        self.data_loader = data_loader
        self.eval_function = eval_function
        self.quant_config = quant_config
        self.batch_nums = quant_config.get("batch_nums", 10)
        self.is_full_quantize = quant_config.get("is_full_quantize", False)
        self.onnx_format = quant_config.get("onnx_format", False)

        self.quantizable_op_type = quant_config.get(
            "quantizable_op_type", list(SUPPORT_WEIGHT_OP_DICT.keys()))
        self.skip_tensor_list = quant_config.get("skip_tensor_list", [])
        if self.skip_tensor_list:
            del self.quant_config['skip_tensor_list']
        quant_config['onnx_format'] = self.onnx_format
        quant_config['algo'] = quant_config.get("algo", 'avg')

        if self.onnx_format:
            self.temp_root_path = tempfile.TemporaryDirectory(dir=self.save_dir)
            self.temp_save_path = os.path.join(self.temp_root_path.name, "ptq")
            if not os.path.exists(self.temp_save_path):
                os.makedirs(self.temp_save_path)

        if not os.path.exists(self.save_dir):
            os.mkdir(self.save_dir)

        devices = paddle.device.get_device().split(':')[0]
        self.places = paddle.device._convert_to_place(devices)

        self.layer_metrics = {}
        if resume:
            self.load_checkpoint()

    def save_checkpoint(self):
        if not os.path.exists(self.save_dir):
            os.makedirs(self.save_dir)
        with open(self.checkpoint_name, 'wb') as f:
            pickle.dump(self.layer_metrics, f)
        _logger.info('Save checkpoint to {}.'.format(self.checkpoint_name))

    def load_checkpoint(self):
        if not os.path.exists(self.checkpoint_name):
            _logger.info('Checkpoint path {} does not exist.'.format(
                self.checkpoint_name))
            return False
        with open(self.checkpoint_name, 'rb') as f:
            self.layer_metrics = pickle.load(f)
        _logger.info('Load checkpoint from {}.'.format(self.checkpoint_name))
        return True

    def get_weight_act_info(self, program, persistable=True):
        self.persistable_var_names = []
        for var in program.list_vars():
            if var.persistable:
                self.persistable_var_names.append(var.name)
        graph = IrGraph(core.Graph(program.desc), for_test=True)

        weight_act_dict = {}
        act_weight_dict = {}
        ops = graph.all_op_nodes()
        for op_node in ops:
            if op_node.name() in self.quantizable_op_type:
                in_x, in_y = SUPPORT_WEIGHT_OP_DICT[op_node.name()][0]
                input_name_x = op_node.input(in_x)[0]
                input_name_y = op_node.input(in_y)[0]
                if not persistable:
                    weight_act_dict[input_name_y] = input_name_x
                    act_weight_dict[input_name_x] = input_name_y
                else:
                    if input_name_y in self.persistable_var_names and input_name_y not in self.skip_tensor_list:
                        weight_act_dict[input_name_y] = input_name_x
                        act_weight_dict[input_name_x] = input_name_y
        return weight_act_dict, act_weight_dict

    def create_ptq(self, executor, skip_tensor_list=[]):
        skip_tensor_list += self.skip_tensor_list
        return PostTrainingQuantization(
            executor=executor,
            data_loader=self.data_loader,
            model_dir=self.float_model_dir,
            model_filename=self.model_filename,
            params_filename=self.params_filename,
            skip_tensor_list=skip_tensor_list,
            **self.quant_config)

    def sampling(self, executor, program, scope, fetch_list):
        batch_id = 0
        for data in self.data_loader():
            executor.run(
                program=program,
                feed=data,
                fetch_list=fetch_list,
                return_numpy=False,
                scope=scope)
            batch_id += 1
            if batch_id >= self.batch_nums:
                break

    def collect_base_stat(self):
        _logger.info('Collecting fp model statistic...')

        executor = paddle.static.Executor(self.places)
        [program, feed_list, fetch_list]= load_inference_model( \
            self.float_model_dir, \
            executor=executor, \
            model_filename=self.model_filename, \
            params_filename=self.params_filename)
        scope = paddle.static.global_scope()

        self.fp_weight_act_dict, self.fp_act_weight_dict = self.get_weight_act_info(
            program)
        self.fp_weight_names = list(self.fp_weight_act_dict.keys())
        self.fp_act_names = list(self.fp_weight_act_dict.values())

        for var in program.list_vars():
            if var.name in self.fp_act_names:
                var.persistable = True

        # sample
        self.sampling(executor, program, scope, fetch_list)
        fp_act = collect_vars(scope, self.fp_act_names)
        fp_weight = collect_vars(scope, self.fp_weight_names)
        executor.close()
        return fp_act, fp_weight

    def collect_quant_stat(self):
        _logger.info('Collecting quant model statistic...')
        if self.quant_model_dir is None:
            executor = paddle.static.Executor(self.places)
            scope = paddle.static.global_scope()
            ptq = self.create_ptq(executor)
            program = ptq.quantize()
            feed_list, fetch_list = ptq._feed_list, ptq._fetch_list
        else:
            executor = paddle.static.Executor(self.places)
            [program, feed_list, fetch_list]= load_inference_model( \
                self.quant_model_dir, \
                executor=executor, \
                model_filename=self.model_filename, \
                params_filename=self.params_filename)
            scope = paddle.static.global_scope()

        self.quant_weight_act_dict, self.quant_act_weight_dict = self.get_weight_act_info(
            program)
        self.quant_weight_names = list(self.quant_weight_act_dict.keys())
        self.quant_act_names = list(self.quant_weight_act_dict.values())

        for var in program.list_vars():
            if var.name in self.quant_act_names:
                var.persistable = True

        self.sampling(executor, program, scope, fetch_list)

        quant_act = collect_vars(scope, self.quant_act_names)
        quant_weight = collect_vars(scope, self.quant_weight_names)
        executor.close()
        return quant_act, quant_weight

    def collect_statistic(self,
                          fp_tensors,
                          quant_tensors,
                          var_name_map,
                          is_weight,
                          axis=None):
        statistic = []
        box_fp_dist, box_q_dist = {}, {}
        hist_fp_dist, hist_q_dist = {}, {}
        fp_tensor_names = sorted(list(fp_tensors.keys()))
        for var_name in fp_tensor_names:
            fp_tensor = fp_tensors[var_name]
            quant_name = var_name_map[
                var_name] if var_name_map is not None else var_name
            quant_tensor = quant_tensors[quant_name]
            diff = fp_tensor - quant_tensor

            fp_min = round(fp_tensor.min(), 4)
            fp_max = round(fp_tensor.max(), 4)
            fp_mean = round(fp_tensor.mean(), 4)
            fp_std = round(fp_tensor.std(), 4)

            q_min = round(quant_tensor.min(), 4)
            q_max = round(quant_tensor.max(), 4)
            q_mean = round(quant_tensor.mean(), 4)
            q_std = round(quant_tensor.std(), 4)

            diff_min = round(diff.min(), 4)
            diff_max = round(diff.max(), 4)
            diff_mean = round(diff.mean(), 4)
            diff_std = round(diff.std(), 4)

            stat = {
                'Var Name':
                var_name,
                'Var Type':
                'Weight' if is_weight else 'Activation',
                'Corresponding Weight Name':
                self.fp_act_weight_dict[var_name] if not is_weight else None,
                'FP32 Min':
                fp_min,
                'FP32 Max':
                fp_max,
                'FP32 Mean':
                fp_mean,
                'FP32 Std':
                fp_std,
                'Quantized Min':
                q_min,
                'Quantized Max':
                q_max,
                'Quantized Mean':
                q_mean,
                'Quantized Std':
                q_std,
                'Diff Min':
                diff_min,
                'Diff Max':
                diff_max,
                'Diff Mean':
                diff_mean,
                'Diff Std':
                diff_std,
            }
            statistic.append(stat)
            # for boxplot
            if axis is None:
                box_fp_tensor = fp_tensor.flatten()
                box_q_tensor = quant_tensor.flatten()
            else:
                box_fp_tensor = fp_tensor.reshape(
                    [-1, fp_tensor.shape[axis]]).abs().max(axis=-1)
                box_q_tensor = quant_tensor.reshape(
                    [-1, quant_tensor.shape[axis]]).abs().max(axis=-1)
            sample_num = len(
                box_fp_tensor) if len(box_fp_tensor) < 1000 else 1000
            box_fp_tensor = random.sample(list(box_fp_tensor), sample_num)
            box_q_tensor = random.sample(list(box_q_tensor), sample_num)
            box_fp_dist[var_name] = box_fp_tensor
            box_q_dist[quant_name] = box_q_tensor

            # for histplot
            _, hist_edges = np.histogram(
                fp_tensor.copy(), bins=50, range=(fp_min, fp_max))
            hist_fp_dist[var_name] = [fp_tensor.flatten(), hist_edges]
            _, hist_edges = np.histogram(
                quant_tensor.copy(), bins=50, range=(q_min, q_max))
            hist_q_dist[quant_name] = [quant_tensor.flatten(), hist_edges]

        return statistic, box_fp_dist, box_q_dist, hist_fp_dist, hist_q_dist

    def statistical_analyse(self, analysis_axis=None):
        fp_act, fp_weight = self.collect_base_stat()
        quant_act, quant_weight = self.collect_quant_stat()
        fp_q_act_dict = {
            self.fp_weight_act_dict[n]: self.quant_weight_act_dict[n]
            for n in self.fp_weight_act_dict
        }
        act_statistic, box_fp_dist, box_q_dist, hist_fp_dist, hist_q_dist = self.collect_statistic(
            fp_act,
            quant_act,
            fp_q_act_dict,
            is_weight=False,
            axis=analysis_axis)

        plot_box_distribution(box_fp_dist, self.save_dir,
                              'fp_activation_boxplot.pdf')
        plot_box_distribution(box_q_dist, self.save_dir,
                              'quantized_activation_boxplot.pdf')
        plot_hist_distribution(hist_fp_dist, self.save_dir,
                               'fp_activation_histplot.pdf')
        plot_hist_distribution(hist_q_dist, self.save_dir,
                               'quantized_activation_histplot.pdf')

        weight_statistic, box_fp_dist, box_q_dist, hist_fp_dist, hist_q_dist = self.collect_statistic(
            fp_weight, quant_weight, None, is_weight=True, axis=analysis_axis)
        plot_box_distribution(box_fp_dist, self.save_dir,
                              'fp_weight_boxplot.pdf')
        plot_box_distribution(box_q_dist, self.save_dir,
                              'quantized_weight_boxplot.pdf')
        plot_hist_distribution(hist_fp_dist, self.save_dir,
                               'fp_weight_histplot.pdf')
        plot_hist_distribution(hist_q_dist, self.save_dir,
                               'quantized_weight_histplot.pdf')

        statistic = act_statistic + weight_statistic
        csv_columns = [
            'Var Name', 'Var Type', 'Corresponding Weight Name', 'FP32 Min',
            'FP32 Max', 'FP32 Mean', 'FP32 Std', 'Quantized Min',
            'Quantized Max', 'Quantized Mean', 'Quantized Std', 'Diff Min',
            'Diff Max', 'Diff Mean', 'Diff Std'
        ]
        save_csv(statistic, self.save_dir, 'statistic.csv', csv_columns)

    def get_quant_sensitive_metric(self, skip_list, layer_name):
        executor = paddle.static.Executor(self.places)
        if self.eval_function is not None:
            ptq = self.create_ptq(executor, skip_list)
            program = ptq.quantize()
            _logger.info('Evaluating...')
            if self.onnx_format:
                post_training_quantization.save_quantized_model(
                    self.temp_save_path,
                    model_filename='model.pdmodel',
                    params_filename='model.pdiparams')
                program, feed_list, fetch_list = load_inference_model(
                    self.temp_save_path,
                    executor,
                    model_filename='model.pdmodel',
                    params_filename='model.pdiparams')
            metric = self.eval_function(executor, program, ptq._feed_list,
                                        ptq._fetch_list)
            sensitive_metric = self.fp_metric - metric
            _logger.info(
                "Quantized layer name: %s, the accuracy: %.4f, the sensitive metric: %.4f"
                % (layer_name, metric, sensitive_metric))
        else:
            float_scope = paddle.static.Scope()
            quant_scope = paddle.static.Scope()
            with paddle.static.scope_guard(float_scope):
                [float_program, float_feed_list,
                 float_fetch_list] = load_inference_model(
                     self.float_model_dir,
                     executor=executor,
                     model_filename=self.model_filename,
                     params_filename=self.params_filename)

            with paddle.static.scope_guard(quant_scope):
                ptq = self.create_ptq(executor, skip_list)
                quant_program = ptq.quantize()

            metric = fp_quant_cosine_similarity(
                executor, self.data_loader, float_program, quant_program,
                float_scope, quant_scope, float_fetch_list, ptq._fetch_list)
            sensitive_metric = 1.0 - metric
            _logger.info(
                "Quantized layer name: %s, the cosine similarity: %.4f, the sensitive metric: %.4f"
                % (layer_name, metric, sensitive_metric))

        executor.close()
        return sensitive_metric

    def get_dequant_sensitive_metric(self, executor, float_scope, quant_scope,
                                     layer_name):
        weight_name = layer_name.split('.quantized.dequantized')[0]
        with paddle.static.scope_guard(float_scope):
            [float_program, float_feed_list,
             float_fetch_list] = load_inference_model(
                 self.float_model_dir,
                 executor=executor,
                 model_filename=self.model_filename,
                 params_filename=self.params_filename)

        with paddle.static.scope_guard(quant_scope):
            [program, quant_feed_list, quant_fetch_list] = load_inference_model(
                self.quant_model_dir,
                executor=executor,
                model_filename=self.model_filename,
                params_filename=self.params_filename)

        program_copy = program.clone()
        graph = IrGraph(core.Graph(program_copy.desc), for_test=True)
        input_rename_map, output_rename_map, removed_ops = get_new_in_out_map(
            self.weight_act_dict[layer_name], graph, float_scope, quant_scope,
            self.places)
        saved_program = relink_graph(graph, input_rename_map, output_rename_map,
                                     removed_ops)
        if self.eval_function is not None:
            with paddle.static.scope_guard(quant_scope):
                _logger.info(
                    'Skip quant {}, evaluating....'.format(weight_name))
                metric = self.eval_function(executor, saved_program,
                                            quant_feed_list, quant_fetch_list)
                sensitive_metric = self.quant_metric - metric
                _logger.info(
                    'When skip quant %s, the eval metric is %.4f, the sensitive metric is %.4f'
                    % (weight_name, metric, self.quant_metric - metric))
        else:
            metric = fp_quant_cosine_similarity(
                executor, self.data_loader, float_program, saved_program,
                float_scope, quant_scope, float_fetch_list, quant_fetch_list)
            sensitive_metric = 1 - metric
            _logger.info(
                'When skip quant %s, the cosine similarity is %.4f, the sensitive metric is %.4f'
                % (weight_name, metric, 1 - metric))
        return sensitive_metric

    def prepare_error_analyse(self, dequant_layer_by_layer):
        if not dequant_layer_by_layer:
            executor = paddle.static.Executor(self.places)
            [program, feed_list, fetch_list]= load_inference_model( \
                self.float_model_dir, \
                executor=executor, \
                model_filename=self.model_filename, \
                params_filename=self.params_filename)

            self.weight_act_dict, _ = self.get_weight_act_info(program)
            self.support_quant_name_list = list(self.weight_act_dict.keys())
            self.tobe_analyized_layer = sorted(
                list(
                    set(self.support_quant_name_list) -
                    set(self.skip_tensor_list)))
            if self.eval_function is not None:
                _logger.info('Start to evaluate the FP model.')
                self.fp_metric = self.eval_function(executor, program,
                                                    feed_list, fetch_list)
                _logger.info(
                    'The accuracy of the FP model is: %.4f' % self.fp_metric)
                executor.close()

                _logger.info('Start to evaluate the quantized model.')
                executor = paddle.static.Executor(self.places)
                ptq = self.create_ptq(executor, self.skip_tensor_list)
                program = ptq.quantize()
                self.quant_metric = self.eval_function(executor, program,
                                                       feed_list, fetch_list)
                _logger.info('The accuracy of the quantized model is: %.4f' %
                             self.quant_metric)
        else:
            executor = paddle.static.Executor(self.places)
            [program, feed_list, fetch_list] = load_inference_model(
                self.quant_model_dir,
                executor=executor,
                model_filename=self.model_filename,
                params_filename=self.params_filename)
            graph = IrGraph(core.Graph(program.desc), for_test=True)

            self.weight_act_dict, _ = self.get_weight_act_info(
                program, persistable=False)

            if self.eval_function is not None:
                _logger.info('Start to evaluate the quantized model.')
                self.quant_metric = self.eval_function(executor, program,
                                                       feed_list, fetch_list)
                _logger.info('The accuracy of the quantized model is: %.4f' %
                             self.quant_metric)
            executor.close()

    def metric_error_analyse(self):
        assert self.data_loader is not None, \
        "When computing the sensitivity of quantized layers, the data loader is needed"
        dequant_layer_by_layer = False if self.quant_model_dir is None else True
        self.prepare_error_analyse(dequant_layer_by_layer)
        if not dequant_layer_by_layer:
            _logger.info(
                'For each layer, quantize the weight op and evaluate the quantized model.'
            )
            # For each layer, quantize the weight op and evaluate the quantized model.
            for i, layer_name in enumerate(self.tobe_analyized_layer):
                if layer_name in self.layer_metrics:
                    continue
                _logger.info(
                    'Checking {}/{} quant model: quant layer {}'.format(
                        i + 1, len(self.tobe_analyized_layer), layer_name))
                skip_list = copy.copy(list(self.support_quant_name_list))
                skip_list.remove(layer_name)
                sensitive_metric = self.get_quant_sensitive_metric(
                    skip_list, layer_name)
                self.layer_metrics[layer_name] = sensitive_metric
                self.save_checkpoint()

            if self.onnx_format:
                self.temp_root_path.cleanup()

        else:
            _logger.info(
                'For each layer, dequantize the weight op and evaluate the quantized model.'
            )
            executor = paddle.static.Executor(self.places)
            float_scope = paddle.static.Scope()
            quant_scope = paddle.static.Scope()
            for idx, name in enumerate(self.weight_act_dict):
                weight_name = name.split('.quantized.dequantized')[0]
                if weight_name in self.layer_metrics:
                    continue
                _logger.info(
                    'Checking {}/{} quant model: without quant layer {}'.format(
                        idx + 1, len(self.weight_act_dict), weight_name))
                sensitive_metric = self.get_dequant_sensitive_metric(
                    executor, float_scope, quant_scope, name)
                self.layer_metrics[weight_name] = sensitive_metric
                self.save_checkpoint()
            executor.close()

        self.sensitivity_ranklist = sorted(
            self.layer_metrics, key=self.layer_metrics.get, reverse=True)

        _logger.info('Finished computing the sensitivity of the model.')
        for name in self.sensitivity_ranklist:
            _logger.info("layer name: {}, sensitivity metric: {}".format(
                name, self.layer_metrics[name]))

        analysis_file = os.path.join(self.save_dir, "analysis.txt")
        with open(analysis_file, "w") as analysis_ret_f:
            for name in self.sensitivity_ranklist:
                analysis_ret_f.write("layer name: {}, sensitivity metric: {}\n".
                                     format(name, self.layer_metrics[name]))
        _logger.info('Analysis file is saved in {}'.format(analysis_file))

    def get_target_quant_model(self, target_metric):
        _logger.info(
            'Start to Find quantized model that satisfies the target metric.')
        _logger.info(
            'Make sure that you are using full eval dataset to get target quantized model.'
        )
        skip_list = []
        if self.layer_metrics:
            rank_list = sorted(
                self.layer_metrics, key=self.layer_metrics.get, reverse=True)
        else:
            _logger.info(
                'Analyse metric error before get target quantized model.')
            self.metric_error_analyse()

        while len(rank_list) > 0:
            skip_list.append(rank_list.pop(0))
            _logger.info('Skip Ops: {}'.format(skip_list))
            executor = paddle.static.Executor(self.places)
            ptq = self.create_ptq(executor, skip_list)
            program = ptq.quantize()

            _logger.info('Evaluating...')
            quant_metric = self.eval_function(executor, program, ptq._feed_list,
                                              ptq._fetch_list)
            _logger.info("Current eval metric: {}, the target metric: {}".
                         format(quant_metric, target_metric))
            if quant_metric >= target_metric:
                quantize_model_path = os.path.join(self.save_dir,
                                                   'target_quant_model')
                _logger.info(
                    'The quantized model satisfies the target metric and is saved to {}'.
                    format(quantize_model_path))
                ptq.save_quantized_model(
                    quantize_model_path,
                    model_filename='model.pdmodel',
                    params_filename='model.pdiparams')
                break
            else:
                _logger.info(
                    'The quantized model does not satisfy the target metric. Skip next Op...'
                )
            executor.close()
        else:
            _logger.info(
                'Sorry, the target quantized model cannot be found. Please set lower target metric.'
            )