run.py 6.7 KB
Newer Older
C
ceci3 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Z
zhouzj 已提交
15 16 17 18 19
import os
import argparse
import random
import paddle
import numpy as np
W
whs 已提交
20
from paddleseg.cvlibs import Config as PaddleSegDataConfig
Z
zhouzj 已提交
21
from paddleseg.utils import worker_init_fn
W
whs 已提交
22

Z
zhouzj 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
from paddleslim.auto_compression import AutoCompression
from paddleseg.core.infer import reverse_transform
from paddleseg.utils import metrics


def parse_args():
    parser = argparse.ArgumentParser(description='Model training')
    parser.add_argument(
        '--model_dir',
        type=str,
        default=None,
        help="inference model directory.")
    parser.add_argument(
        '--model_filename',
        type=str,
        default=None,
        help="inference model filename.")
    parser.add_argument(
        '--params_filename',
        type=str,
        default=None,
        help="inference params filename.")
    parser.add_argument(
        '--save_dir',
        type=str,
        default=None,
        help="directory to save compressed model.")
    parser.add_argument(
W
whs 已提交
51
        '--strategy_config',
Z
zhouzj 已提交
52 53 54
        type=str,
        default=None,
        help="path of compression strategy config.")
W
whs 已提交
55 56 57 58 59
    parser.add_argument(
        '--dataset_config',
        type=str,
        default=None,
        help="path of dataset config.")
Z
zhouzj 已提交
60 61 62 63 64
    parser.add_argument(
        '--deploy_hardware',
        type=str,
        default=None,
        help="The hardware you want to deploy.")
Z
zhouzj 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
    return parser.parse_args()


def eval_function(exe, compiled_test_program, test_feed_names, test_fetch_list):

    nranks = paddle.distributed.ParallelEnv().local_rank

    batch_sampler = paddle.io.DistributedBatchSampler(
        eval_dataset, batch_size=1, shuffle=False, drop_last=False)
    loader = paddle.io.DataLoader(
        eval_dataset,
        batch_sampler=batch_sampler,
        num_workers=1,
        return_list=True, )

    total_iters = len(loader)
    intersect_area_all = 0
    pred_area_all = 0
    label_area_all = 0

    print("Start evaluating (total_samples: {}, total_iters: {})...".format(
        len(eval_dataset), total_iters))

    for iter, (image, label) in enumerate(loader):
        paddle.enable_static()

        label = np.array(label).astype('int64')
        ori_shape = np.array(label).shape[-2:]

        image = np.array(image)
        logits = exe.run(compiled_test_program,
                         feed={test_feed_names[0]: image},
                         fetch_list=test_fetch_list,
                         return_numpy=True)

        paddle.disable_static()
        logit = logits[0]

        logit = reverse_transform(
            paddle.to_tensor(logit),
            ori_shape,
            eval_dataset.transforms.transforms,
            mode='bilinear')
108 109 110 111 112
        pred = paddle.to_tensor(logit)
        if len(
                pred.shape
        ) == 4:  # for humanseg model whose prediction is distribution but not class id
            pred = paddle.argmax(pred, axis=1, keepdim=True, dtype='int32')
Z
zhouzj 已提交
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170

        intersect_area, pred_area, label_area = metrics.calculate_area(
            pred,
            paddle.to_tensor(label),
            eval_dataset.num_classes,
            ignore_index=eval_dataset.ignore_index)

        if nranks > 1:
            intersect_area_list = []
            pred_area_list = []
            label_area_list = []
            paddle.distributed.all_gather(intersect_area_list, intersect_area)
            paddle.distributed.all_gather(pred_area_list, pred_area)
            paddle.distributed.all_gather(label_area_list, label_area)

            # Some image has been evaluated and should be eliminated in last iter
            if (iter + 1) * nranks > len(eval_dataset):
                valid = len(eval_dataset) - iter * nranks
                intersect_area_list = intersect_area_list[:valid]
                pred_area_list = pred_area_list[:valid]
                label_area_list = label_area_list[:valid]

            for i in range(len(intersect_area_list)):
                intersect_area_all = intersect_area_all + intersect_area_list[i]
                pred_area_all = pred_area_all + pred_area_list[i]
                label_area_all = label_area_all + label_area_list[i]
        else:
            intersect_area_all = intersect_area_all + intersect_area
            pred_area_all = pred_area_all + pred_area
            label_area_all = label_area_all + label_area

    class_iou, miou = metrics.mean_iou(intersect_area_all, pred_area_all,
                                       label_area_all)
    class_acc, acc = metrics.accuracy(intersect_area_all, pred_area_all)
    kappa = metrics.kappa(intersect_area_all, pred_area_all, label_area_all)
    class_dice, mdice = metrics.dice(intersect_area_all, pred_area_all,
                                     label_area_all)

    infor = "[EVAL] #Images: {} mIoU: {:.4f} Acc: {:.4f} Kappa: {:.4f} Dice: {:.4f}".format(
        len(eval_dataset), miou, acc, kappa, mdice)
    print(infor)

    paddle.enable_static()
    return miou


def reader_wrapper(reader):
    def gen():
        for i, data in enumerate(reader()):
            imgs = np.array(data[0])
            yield {"x": imgs}

    return gen


if __name__ == '__main__':

    args = parse_args()
171
    paddle.enable_static()
W
whs 已提交
172 173 174 175
    # step1: load dataset config and create dataloader
    data_cfg = PaddleSegDataConfig(args.dataset_config)
    train_dataset = data_cfg.train_dataset
    eval_dataset = data_cfg.val_dataset
Z
zhouzj 已提交
176
    batch_sampler = paddle.io.DistributedBatchSampler(
W
whs 已提交
177 178 179 180
        train_dataset,
        batch_size=data_cfg.batch_size,
        shuffle=True,
        drop_last=True)
Z
zhouzj 已提交
181 182 183 184 185
    train_loader = paddle.io.DataLoader(
        train_dataset,
        batch_sampler=batch_sampler,
        num_workers=2,
        return_list=True,
Z
zhouzj 已提交
186
        worker_init_fn=worker_init_fn)
Z
zhouzj 已提交
187 188
    train_dataloader = reader_wrapper(train_loader)

W
whs 已提交
189
    # step2: create and instance of AutoCompression
Z
zhouzj 已提交
190 191 192
    ac = AutoCompression(
        model_dir=args.model_dir,
        model_filename=args.model_filename,
C
ceci3 已提交
193
        params_filename=args.params_filename,
Z
zhouzj 已提交
194
        save_dir=args.save_dir,
W
whs 已提交
195
        config=args.strategy_config,
Z
zhouzj 已提交
196
        train_dataloader=train_dataloader,
Z
zhouzj 已提交
197 198
        eval_callback=eval_function,
        deploy_hardware=args.deploy_hardware)
Z
zhouzj 已提交
199

W
whs 已提交
200
    # step3: start the compression job
Z
zhouzj 已提交
201
    ac.compress()