auto_strategy.py 9.5 KB
Newer Older
C
ceci3 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import logging
import platform
from ..common import get_logger
19
from .utils.predict import predict_compressed_model, with_variable_shape
C
ceci3 已提交
20
from .strategy_config import *
W
whs 已提交
21
from paddleslim.analysis import TableLatencyPredictor
C
ceci3 已提交
22 23 24 25 26 27 28

_logger = get_logger(__name__, level=logging.INFO)

__all__ = [
    "prepare_strategy", "create_strategy_config", "get_final_quant_config"
]

29
# config tester to test the loss of quant_post
C
ceci3 已提交
30
hpo_config_tester = {
C
ceci3 已提交
31
    "ptq_algo": ["avg", "mse", "KL"],
C
ceci3 已提交
32 33
    "weight_quantize_type": ['channel_wise_abs_max', 'abs_max'],
    "bias_correct": [False],
34
    "batch_num": [5],
C
ceci3 已提交
35 36 37
    "max_quant_count": 1,
}

38
# default hpo config
C
ceci3 已提交
39 40 41 42 43 44 45 46 47
default_hpo_config = {
    "ptq_algo": ["KL", "hist", "avg", "mse"],
    "weight_quantize_type": ['channel_wise_abs_max', 'abs_max'],
    "bias_correct": [True, False],
    "hist_percent": [0.98, 0.999],
    "batch_num": [10, 30],
    "max_quant_count": 20,
}

48
# default quant config, can be used by ptq&hpo and qat&distillation
C
ceci3 已提交
49
default_quant_config = {
C
ceci3 已提交
50 51
    'quantize_op_types':
    ['conv2d', 'depthwise_conv2d', 'mul', 'matmul', 'matmul_v2'],
C
ceci3 已提交
52
    'weight_bits': 8,
53 54
    'activation_bits': 8,
    "is_full_quantize": False,
C
ceci3 已提交
55 56
    "activation_quantize_type": 'moving_average_abs_max',
    "weight_quantize_type": 'channel_wise_abs_max',
57 58 59 60 61 62 63 64
    "not_quant_pattern": ["skip_quant"],
}

# default train config
DefaultTrainConfig = {
    "epochs": 1,
    "eval_iter": 500,
    "learning_rate": 0.0001,
C
ceci3 已提交
65 66 67 68
    "optimizer_builder": {
        "optimizer": {
            "type": "Momentum",
        },
69
        "weight_decay": 4.0e-05
C
ceci3 已提交
70
    }
C
ceci3 已提交
71 72 73 74 75 76 77
}

EXPERIENCE_STRATEGY_WITHOUT_LOSS = [
    'sparse_0.75_fp32', 'prune_0.3_fp32', 'origin_int8', 'sparse_0.75_int8',
    'prune_0.3_int8'
]
MAGIC_SPARSE_RATIO = 0.75
C
ceci3 已提交
78
### TODO: 0.02 threshold maybe not suitable, need to check
C
ceci3 已提交
79 80 81
### NOTE: reduce magic data to choose quantization aware training.
MAGIC_MAX_EMD_DISTANCE = 0.0002  #0.02
MAGIC_MIN_EMD_DISTANCE = 0.0001  #0.01
C
ceci3 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94

DEFAULT_TRANSFORMER_STRATEGY = 'prune_0.25_int8'
DEFAULT_STRATEGY = 'origin_int8'
DEFAULT_QUANT_SPEEDUP = 0.7


def create_strategy_config(strategy_str, model_type):
    """ create config according to string"""
    tmp_s = strategy_str.split('_')
    configs = []

    dis_config = Distillation()
    if len(tmp_s) == 3:
C
ceci3 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107
        ### TODO(ceci3): choose prune algo automatically
        if 'prune' in tmp_s[0]:
            ### default prune config
            default_prune_config = {
                'pruned_ratio': float(tmp_s[1]),
                'criterion': 'l1_norm'
            }
        else:
            ### default unstruture prune config
            default_prune_config = {
                'prune_strategy':
                'gmp',  ### default unstruture prune strategy is gmp
                'prune_mode': 'ratio',
C
ceci3 已提交
108
                'ratio': float(tmp_s[1]),
C
ceci3 已提交
109 110 111
                'local_sparsity': True,
                'prune_params_type': 'conv1x1_only'
            }
C
ceci3 已提交
112 113 114 115 116
        if model_type == 'transformer':
            tmp_s[0] = tmp_s[0].replace('prune', 'TransformerPrune')
            default_prune_config = {'pruned_ratio': float(tmp_s[1])}
        else:
            tmp_s[0] = tmp_s[0].replace('prune', 'Prune')
C
ceci3 已提交
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
        tmp_s[0] = tmp_s[0].replace('sparse', 'UnstructurePrune')
        prune_config = eval(tmp_s[0])(**default_prune_config)
        configs.append({tmp_s[0]: prune_config, 'Distillation': dis_config})

    ### TODO(ceci3): support skip some layer and full quant
    if tmp_s[-1] == 'int8':
        ### only platform is linux can use smac to do hyperparameter optimization
        ### choose quant_aware to do quantization in other platform
        if platform.system().lower() == 'linux':
            quant_config = Quantization(**default_quant_config)
            hpo_config = HyperParameterOptimization(**hpo_config_tester)
            configs.append({
                'Quantization': quant_config,
                'HyperParameterOptimization': hpo_config
            })
        else:
            quant_config = Quantization(**default_quant_config)
            dis_config = Distillation()
            configs.append({
                'Quantization': quant_config,
                'Distillation': dis_config
            })

    return configs


143 144 145 146 147 148
def create_train_config(strategy_str, model_type):
    # TDOD: support more strategy and model_type
    train_config = TrainConfig(**DefaultTrainConfig)
    return train_config


C
ceci3 已提交
149 150 151
def prepare_strategy(executor,
                     places,
                     model_dir,
C
ceci3 已提交
152 153 154 155 156 157 158 159
                     model_filename,
                     params_filename,
                     target_speedup=None,
                     deploy_hardware=None,
                     model_type=None):
    """ prepare compression config automatically """
    final_strategy = None

160 161
    ### use hardware latency tabel if support
    if not with_variable_shape(
162 163
            model_dir,
            model_filename=model_filename,
164 165 166
            params_filename=params_filename) and (
                deploy_hardware in TableLatencyPredictor.hardware_list):

C
ceci3 已提交
167
        compressed_time_dict = predict_compressed_model(
C
ceci3 已提交
168 169
            executor,
            places,
C
ceci3 已提交
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
            model_dir,
            model_filename,
            params_filename,
            hardware=deploy_hardware)

        baseline = compressed_time_dict['origin_fp32']
        speedup_ratio = {}
        for strategy, latency in compressed_time_dict.items():
            speedup_ratio[strategy] = 1.0 - float(latency) / baseline

        sorted_speedup_ratio = sorted(speedup_ratio.items(), key=lambda x: x[1])

        ### if target speedup is None, choose strategy by experience.
        if target_speedup is None:
            max_speedup = -1.0
            for s in EXPERIENCE_STRATEGY_WITHOUT_LOSS:
                if s not in speedup_ratio:
                    _logger.info(f"cannot get the speed up of strategy {s}")
                    continue

                if speedup_ratio[s] > max_speedup:
                    max_speedup = speedup_ratio[s]
                    final_strategy = s
        else:
            candidate_s = []
            pre_s = None
            for strategy, ratio in sorted_speedup_ratio:
                if abs(ratio - target_speedup) <= 0.1:
                    candidate_s.append(strategy)
                ### if there is no strategy satisfy target speedup
                ### choose the most recent speedup 
                if ratio > target_speedup and len(candidate_s) == 0:
                    if pre_s is not None:
                        candidate_s.append(pre_s)
                    candidate_s.append(strategy)
                pre_s = strategy

            if 'origin_int8' in candidate_s:
                final_strategy = candidate_s
            else:
                candidate_s = sorted(candidate_s, key=lambda x: x.split('_')[1])
                for c in candidate_s:
                    if c.startswith('sparse') and float(c.split('_')[
                            1]) <= MAGIC_SPARSE_RATIO:
                        final_strategy = c

                if final_strategy is None:
                    final_strategy = candidate_s[0]

    else:
        ### default speedup ratio of quantization is 70% compare to fp32
        ### TODO(ceci3): full quant or skip some layer later
        if target_speedup is None:
            if model_type == 'transformer':
                final_strategy = DEFAULT_TRANSFORMER_STRATEGY
            else:
                final_strategy = DEFAULT_STRATEGY

        elif target_speedup > DEFAULT_QUANT_SPEEDUP:
            prune_ratio = target_speedup - DEFAULT_QUANT_SPEEDUP
            if prune_ratio > 1.0:
                raise NotImplementedError(
                    "target_speedup {} is improper".format(target_speedup))
            final_strategy = 'prune_{}_int8'.format(str(prune_ratio))
        else:
            raise NotImplementedError("target_speedup {} is improper".format(
                target_speedup))

    strategy_config = create_strategy_config(final_strategy, model_type)
    return strategy_config


C
ceci3 已提交
242
def get_final_quant_config(ptq_loss, model_type=None):
C
ceci3 已提交
243
    """ transform quantization tester config to real quantization config """
C
ceci3 已提交
244 245 246 247 248
    ### if emd loss less than MAGIC_MIN_EMD_DISTANCE, final compress.
    if ptq_loss < MAGIC_MIN_EMD_DISTANCE:
        return None
    ### if emd loss less than MAGIC_MAX_EMD_DISTANCE, select quant_post & hpo.
    elif ptq_loss < MAGIC_MAX_EMD_DISTANCE:
C
ceci3 已提交
249 250 251 252 253 254 255
        quant_config = Quantization(**default_quant_config)
        hpo_config = HyperParameterOptimization(**default_hpo_config)
        configs = [{
            'Quantization': quant_config,
            'HyperParameterOptimization': hpo_config
        }]

C
ceci3 已提交
256 257
    ### if emd loss greater than MAGIC_MAX_EMD_DISTANCE, select qat & dist.
    else:
C
ceci3 已提交
258 259 260
        quant_config = Quantization(**default_quant_config)
        dis_config = Distillation()
        configs = [{'Quantization': quant_config, 'Distillation': dis_config}]
261
        _logger.info("Start Quantization and Distillation Training.")
C
ceci3 已提交
262 263 264 265 266 267

    return configs


if __name__ == '__main__':
    create_strategy_config('sparse_0.75_int8', 'transformer')