compressor.py 40.9 KB
Newer Older
C
ceci3 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
import os
import sys
W
whs 已提交
18
import copy
C
ceci3 已提交
19
import numpy as np
C
ceci3 已提交
20
import copy
C
ceci3 已提交
21
import inspect
C
ceci3 已提交
22
import shutil
W
whs 已提交
23
from time import gmtime, strftime
24
import platform
C
ceci3 已提交
25
import paddle
W
whs 已提交
26
import itertools
C
ceci3 已提交
27
import paddle.distributed.fleet as fleet
28
from ..quant.quanter import convert, quant_post
C
ceci3 已提交
29 30
from ..common.recover_program import recover_inference_program
from ..common import get_logger
C
ceci3 已提交
31 32
from ..common.patterns import get_patterns
from ..analysis import TableLatencyPredictor
Z
zhouzj 已提交
33
from .create_compressed_program import build_distill_program, build_quant_program, build_prune_program, remove_unused_var_nodes
C
ceci3 已提交
34
from .strategy_config import TrainConfig, ProgramInfo, merge_config
35
from .auto_strategy import prepare_strategy, get_final_quant_config, create_strategy_config, create_train_config
W
whs 已提交
36
from .config_helpers import load_config, extract_strategy_config, extract_train_config
37
from .utils.predict import with_variable_shape
C
ceci3 已提交
38
from .utils import get_feed_vars, wrap_dataloader, load_inference_model
C
ceci3 已提交
39 40 41

_logger = get_logger(__name__, level=logging.INFO)

C
ceci3 已提交
42 43
try:
    if platform.system().lower() == 'linux':
C
ceci3 已提交
44
        from ..quant import post_quant_hpo
C
ceci3 已提交
45 46 47
except Exception as e:
    _logger.warning(e)

C
ceci3 已提交
48 49 50 51 52 53 54 55

class AutoCompression:
    def __init__(self,
                 model_dir,
                 model_filename,
                 params_filename,
                 save_dir,
                 train_dataloader,
W
whs 已提交
56
                 config=None,
57
                 input_shapes=None,
C
ceci3 已提交
58
                 target_speedup=None,
59
                 eval_callback=None,
C
ceci3 已提交
60 61 62 63 64 65 66
                 eval_dataloader=None,
                 deploy_hardware='gpu'):
        """
        Compress inference model automatically.

        Args:
            model_dir(str): The path of inference model that will be compressed, and
C
ceci3 已提交
67
                the model and params that saved by ``paddle.static.save_inference_model``
C
ceci3 已提交
68
                are under the path.
C
ceci3 已提交
69 70
            model_filename(str):  The name of model file. 
            params_filename(str): The name of params file.
W
whs 已提交
71 72
            save_dir(str): The path to save compressed model. The models in this directory will be overwrited
                after calling 'compress()' function.
C
ceci3 已提交
73 74 75
            train_data_loader(Python Generator, Paddle.io.DataLoader): The
                Generator or Dataloader provides train data, and it could
                return a batch every time.
76 77 78 79 80 81 82
            input_shapes(dict|tuple|list): It is used when the model has implicit dimensions except batch size. 
                If it is a dict, the key is the name of input and the value is the shape. 
                Given the input shape of input "X" is [-1, 3, -1, -1] which means the batch size, hight
                and width is variable. And the input_shapes can be set {"X": [-1, 3, 512, 512]}.
                If it is a list or tuple, the number of model's inputs should be 1. And the shape of input
                will be set input_shapes. None means keeping the original shapes, then
                the compression strategies searching may be skipped. Default: None.
C
ceci3 已提交
83 84 85 86 87 88 89 90 91 92 93
            train_config(dict, optional): The train config in the compression process, the key can 
                reference `<https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L103>`_ . 
                Only one strategy(quant_post with hyperparameter optimization) can set train_config 
                to None. Default: None. 
            strategy_config(dict, list(dict), optional): The strategy config. You can set single config to get multi-strategy config, such as
                1. set ``Quantization`` and ``Distillation`` to get quant_aware and distillation compress config.
                    The Quantization config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L24`_ .
                    The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L39`_ .
                2. set ``Quantization`` and ``HyperParameterOptimization`` to get quant_post and hyperparameter optimization compress config.
                    The Quantization config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L24`_ .
                    The HyperParameterOptimization config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L73`_ .
C
ceci3 已提交
94 95
                3. set ``ChannelPrune`` and ``Distillation`` to get channel prune and distillation compress config.
                    The ChannelPrune config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L82`_ .
C
ceci3 已提交
96
                    The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L39`_ .
C
ceci3 已提交
97 98 99 100 101 102 103
                4. set ``ASPPrune`` and ``Distillation`` to get asp prune and distillation compress config.
                    The ASPPrune config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L82`_ .
                    The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L39`_ .
                5. set ``TransformerPrune`` and ``Distillation`` to get transformer prune and distillation compress config.
                    The TransformerPrune config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L82`_ .
                    The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L39`_ .
                6. set ``UnstructurePrune`` and ``Distillation`` to get unstructureprune and distillation compress config.
C
ceci3 已提交
104 105
                    The UnstructurePrune config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L91`_ .
                    The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L39`_ .
C
ceci3 已提交
106
                7. set ``Distillation`` to use one teacher modol to distillation student model.
C
ceci3 已提交
107
                    The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L39`_ .
C
ceci3 已提交
108
                8. set ``MultiTeacherDistillation`` to use multi-teacher to distillation student model.
C
ceci3 已提交
109 110 111 112 113
                    The MultiTeacherDistillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L56`_ .

                If set to None, will choose a strategy automatically. Default: None.
            target_speedup(float, optional): target speedup ratio by the way of auto compress. Default: None.
            eval_callback(function, optional): eval function, define by yourself to return the metric of the inference program, can be used to judge the metric of compressed model. The documents of how to write eval function is `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/docs/zh_cn/api_cn/static/auto-compression/custom_function.rst`_ . ``eval_callback`` and ``eval_dataloader`` cannot be None at the same time. Dafault: None.
114 115 116
            eval_dataloader(paddle.io.Dataloader, optional):  The Generator or Dataloader provides eval data, and it could
                 return a batch every time. If eval_dataloader is None, will take first 5000 sample from train_dataloader 
                 as eval_dataloader, and the metric of eval_dataloader for reference only. Dafault: None.
C
ceci3 已提交
117 118
            deploy_hardware(str, optional): The hardware you want to deploy. Default: 'gpu'.
        """
G
Guanghua Yu 已提交
119
        self.model_dir = model_dir.rstrip('/')
C
ceci3 已提交
120

C
ceci3 已提交
121 122
        if model_filename == 'None':
            model_filename = None
C
ceci3 已提交
123
        self.model_filename = model_filename
C
ceci3 已提交
124 125
        if params_filename == 'None':
            params_filename = None
C
ceci3 已提交
126
        self.params_filename = params_filename
C
ceci3 已提交
127 128 129 130 131 132

        if params_filename is None and model_filename is not None:
            raise NotImplementedError(
                "NOT SUPPORT parameters saved in separate files. Please convert it to single binary file first."
            )

C
ceci3 已提交
133
        self.final_dir = save_dir
W
whs 已提交
134 135
        if not os.path.exists(self.final_dir):
            os.makedirs(self.final_dir)
W
whs 已提交
136 137 138 139

        # load config
        if isinstance(config, str):
            config = load_config(config)
C
ceci3 已提交
140 141 142
            self.train_config = extract_train_config(config)
        elif isinstance(config, dict):
            if 'TrainConfig' in config:
C
ceci3 已提交
143
                self.train_config = TrainConfig(**config.pop('TrainConfig'))
C
ceci3 已提交
144 145
            else:
                self.train_config = None
C
ceci3 已提交
146
        self.strategy_config = extract_strategy_config(config)
W
whs 已提交
147 148

        # prepare dataloader
G
Guanghua Yu 已提交
149
        self.feed_vars = get_feed_vars(self.model_dir, model_filename,
W
whs 已提交
150 151 152 153 154 155 156
                                       params_filename)
        self.train_dataloader = wrap_dataloader(train_dataloader,
                                                self.feed_vars)
        self.eval_dataloader = wrap_dataloader(eval_dataloader, self.feed_vars)
        if eval_dataloader is None:
            eval_dataloader = self._get_eval_dataloader(self.train_dataloader)

C
ceci3 已提交
157 158
        self.target_speedup = target_speedup
        self.eval_function = eval_callback
159
        self.deploy_hardware = deploy_hardware
160

C
ceci3 已提交
161
        paddle.enable_static()
C
ceci3 已提交
162
        self._exe, self._places = self._prepare_envs()
G
Guanghua Yu 已提交
163
        self.model_type = self._get_model_type(self._exe, self.model_dir,
C
ceci3 已提交
164
                                               model_filename, params_filename)
C
ceci3 已提交
165

166
        if self.train_config is not None and self.train_config.use_fleet:
C
ceci3 已提交
167 168
            fleet.init(is_collective=True)

169 170 171 172 173 174 175
        if with_variable_shape(
                self.model_dir,
                model_filename=model_filename,
                params_filename=params_filename) and input_shapes is not None:

            infer_shape_model = self.create_tmp_dir(
                self.final_dir, prefix="infer_shape_model_")
G
Guanghua Yu 已提交
176
            self._infer_shape(self.model_dir, self.model_filename,
177 178 179 180 181
                              self.params_filename, input_shapes,
                              infer_shape_model)
            self.model_dir = infer_shape_model
            self.model_filename = "infered_shape.pdmodel"
            self.params_filename = "infered_shape.pdiparams"
W
whs 已提交
182

C
ceci3 已提交
183 184
        if self.strategy_config is None:
            strategy_config = prepare_strategy(
C
ceci3 已提交
185 186 187
                self._exe, self._places, self.model_dir, self.model_filename,
                self.params_filename, self.target_speedup, self.deploy_hardware,
                self.model_type)
C
ceci3 已提交
188 189 190 191 192 193 194 195 196 197
            self.strategy_config = strategy_config
        elif isinstance(self.strategy_config, dict):
            self.strategy_config = [self.strategy_config]
        elif isinstance(self.strategy_config, str):
            strategy_config = create_strategy_config(self.strategy_config,
                                                     self.model_type)

        self._strategy, self._config = self._prepare_strategy(
            self.strategy_config)

C
ceci3 已提交
198
        self.train_config = self._get_final_train_config(
199 200
            self.train_config, self._strategy, self.model_type)
        _logger.info(f"Selected strategies: {self._strategy}")
C
ceci3 已提交
201 202 203

    def _get_final_train_config(self, train_config, strategy_config,
                                model_type):
204
        # If train_config is None, set default train_config
C
ceci3 已提交
205 206 207 208 209
        if train_config is None:
            train_config = create_train_config(strategy_config, model_type)

        train_configs = [train_config]
        for idx in range(1, len(self._strategy)):
C
ceci3 已提交
210 211 212
            if 'qat' in self._strategy[idx] or 'ptq' in self._strategy[idx]:
                ### If compress strategy more than one, the TrainConfig in the yaml only used in prune.
                ### The TrainConfig for quantization is extrapolate from above.
C
ceci3 已提交
213 214
                tmp_train_config = copy.deepcopy(train_config.__dict__)
                ### the epoch, train_iter, learning rate of quant is 10% of the prune compress
C
ceci3 已提交
215 216 217
                if self.model_type != 'transformer':
                    tmp_train_config['epochs'] = max(
                        int(train_config.epochs * 0.1), 1)
C
ceci3 已提交
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
                if train_config.train_iter is not None:
                    tmp_train_config['train_iter'] = int(
                        train_config.train_iter * 0.1)
                if isinstance(train_config.learning_rate, float):
                    tmp_train_config[
                        'learning_rate'] = train_config.learning_rate * 0.1
                else:
                    if 'learning_rate' in train_config.learning_rate:
                        tmp_train_config['learning_rate'][
                            'learning_rate'] = train_config.learning_rate[
                                'learning_rate'] * 0.1
                    else:  ### learning rate decay is PiecewiseDecay
                        tmp_train_config['learning_rate']['values'] = list(
                            map(lambda x: x * 0.1, train_config.learning_rate[
                                'values']))
                train_cfg = TrainConfig(**tmp_train_config)
            else:
                tmp_train_config = copy.deepcopy(train_config.__dict__)
                train_cfg = TrainConfig(**tmp_train_config)

            train_configs.append(train_cfg)
        return train_configs
240

241 242 243 244 245 246 247
    def _infer_shape(self, model_dir, model_filename, params_filename,
                     input_shapes, save_path):
        assert type(input_shapes) in [
            dict, list, tuple
        ], f'Type of input_shapes should be in [dict, tuple or list] but got {type(input_shapes)}.'
        paddle.enable_static()
        exe = paddle.static.Executor(paddle.CPUPlace())
C
ceci3 已提交
248 249 250
        [inference_program, feed_target_names,
         fetch_targets] = (load_inference_model(model_dir, exe, model_filename,
                                                params_filename))
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280

        if type(input_shapes) in [list, tuple]:
            assert len(
                feed_target_names
            ) == 1, f"The number of model's inputs should be 1 but got {feed_target_names}."
            input_shapes = {feed_target_names[0]: input_shapes}

        feed_vars = []
        for var_ in inference_program.list_vars():
            if var_.name in feed_target_names:
                feed_vars.append(var_)
                var_.desc.set_shape(input_shapes[var_.name])

        for block in inference_program.blocks:
            for op in block.ops:
                if op.type not in ["feed", "fetch"]:
                    op.desc.infer_shape(block.desc)

        save_path = os.path.join(save_path, "infered_shape")
        os.makedirs(save_path)
        paddle.static.save_inference_model(
            save_path, feed_vars, fetch_targets, exe, program=inference_program)
        _logger.info(f"Saved model infered shape to {save_path}")

    @property
    def deploy_hardware(self):
        return self._deploy_hardware

    @deploy_hardware.setter
    def deploy_hardware(self, value):
281 282 283 284
        supported_hardware = TableLatencyPredictor.hardware_list + [
            'gpu',  # nvidia gpu
            "cpu",  # intel cpu
        ]
285 286 287
        if value is not None:
            # Fail-fast when deploy hardware is set explicitly
            assert (
288 289
                value in supported_hardware
            ), f"Hardware should be in supported list {supported_hardware} but got {value}. Or you can set deploy_hardware None."
290 291
        self._deploy_hardware = value

292 293 294 295 296 297 298 299 300 301 302
    def _get_eval_dataloader(self, train_dataloader):
        def _gen():
            len_loader = len(list(train_dataloader()))
            ### max eval_dataloader is 5000 if use train_dataloader as eval_dataloader
            slice_len = min(5000, len_loader)
            ret = list(itertools.islice(train_dataloader(), slice_len))
            for i in ret:
                yield i

        return _gen

C
ceci3 已提交
303 304
    def _prepare_envs(self):
        devices = paddle.device.get_device().split(':')[0]
C
ceci3 已提交
305
        places = paddle.device._convert_to_place(devices)
W
whs 已提交
306
        _logger.info(f"devices: {devices}")
C
ceci3 已提交
307 308 309
        exe = paddle.static.Executor(places)
        return exe, places

C
ceci3 已提交
310
    def _get_model_type(self, exe, model_dir, model_filename, params_filename):
C
ceci3 已提交
311 312
        [inference_program, _, _]= (load_inference_model( \
            model_dir, \
C
ceci3 已提交
313
            model_filename=model_filename, params_filename=params_filename,
C
ceci3 已提交
314
            executor=exe))
C
ceci3 已提交
315
        _, _, model_type = get_patterns(inference_program)
C
ceci3 已提交
316 317 318 319 320 321 322 323 324 325 326
        if self.model_filename is None:
            new_model_filename = '__new_model__'
        else:
            new_model_filename = 'new_' + self.model_filename
        program_bytes = inference_program._remove_training_info(
            clip_extra=False).desc.serialize_to_string()
        with open(os.path.join(self.model_dir, new_model_filename), "wb") as f:
            f.write(program_bytes)
        shutil.move(
            os.path.join(self.model_dir, new_model_filename),
            os.path.join(self.model_dir, self.model_filename))
W
whs 已提交
327
        _logger.info(f"Detect model type: {model_type}")
C
ceci3 已提交
328 329 330 331 332 333 334 335 336 337 338
        return model_type

    def _prepare_strategy(self, strategy_config):
        if not isinstance(strategy_config, list):
            strategy_config = list(list(strategy_config))

        strategy = []
        config = []
        for strategy_c in strategy_config:
            quant_config = strategy_c.get("Quantization", None)
            hpo_config = strategy_c.get("HyperParameterOptimization", None)
C
ceci3 已提交
339 340 341
            prune_config = strategy_c.get("ChannelPrune", None)
            asp_config = strategy_c.get("ASPPrune", None)
            transformer_prune_config = strategy_c.get("TransformerPrune", None)
C
ceci3 已提交
342 343 344
            unstructure_prune_config = strategy_c.get("UnstructurePrune", None)
            single_teacher_distill_config = strategy_c.get("Distillation", None)
            if single_teacher_distill_config is not None and single_teacher_distill_config.teacher_model_dir is None:
C
ceci3 已提交
345 346 347
                single_teacher_distill_config.teacher_model_dir = self.model_dir
                single_teacher_distill_config.teacher_model_filename = self.model_filename
                single_teacher_distill_config.teacher_params_filename = self.params_filename
C
ceci3 已提交
348 349 350 351 352 353 354 355 356 357

            multi_teacher_distill_config = strategy_c.get(
                "MultiTeacherDistillation", None)

            assert (single_teacher_distill_config is None) or (multi_teacher_distill_config is None), \
                "Distillation and MultiTeacherDistillation cannot be set at the same time."
            self._distill_config = single_teacher_distill_config if \
                   single_teacher_distill_config is not None else \
                   multi_teacher_distill_config

C
ceci3 已提交
358
            only_distillation = True
C
ceci3 已提交
359

C
ceci3 已提交
360 361 362
            ### case1: prune_config & distill config
            if prune_config is not None and self._distill_config is not None:
                only_distillation = False
C
ceci3 已提交
363
                strategy.append('channel_prune_dis')
C
ceci3 已提交
364 365
                config.append(merge_config(prune_config, self._distill_config))

C
ceci3 已提交
366 367 368
            ### case2: asp_config & distill config
            if asp_config is not None and self._distill_config is not None:
                only_distillation = False
C
ceci3 已提交
369 370 371
                strategy.append('asp_prune_dis')
                config.append(merge_config(asp_config, self._distill_config))

C
ceci3 已提交
372 373 374
            ### case3: transformer_prune_config & distill config
            if transformer_prune_config is not None and self._distill_config is not None:
                only_distillation = False
C
ceci3 已提交
375 376 377 378 379
                strategy.append('transformer_prune_dis')
                config.append(
                    merge_config(transformer_prune_config,
                                 self._distill_config))

C
ceci3 已提交
380 381 382
            ### case4: unstructure_config & distill config
            if unstructure_prune_config is not None and self._distill_config is not None:
                only_distillation = False
C
ceci3 已提交
383 384 385 386 387
                strategy.append('unstructure_prune_dis')
                config.append(
                    merge_config(unstructure_prune_config,
                                 self._distill_config))

C
ceci3 已提交
388 389 390 391 392 393 394 395 396 397 398 399
            ### case5: quant_config & hpo_config ==> PTQ & HPO
            if quant_config is not None and hpo_config is not None:
                only_distillation = False
                strategy.append('ptq_hpo')
                config.append(merge_config(quant_config, hpo_config))

            ### case6: quant_config & distill config ==> QAT & Distill
            if quant_config is not None and self._distill_config is not None:
                only_distillation = False
                strategy.append('qat_dis')
                config.append(merge_config(quant_config, self._distill_config))

C
ceci3 已提交
400
            ### case7: distill_config
C
ceci3 已提交
401
            if only_distillation == True and self._distill_config is not None:
C
ceci3 已提交
402 403 404 405 406 407
                if single_teacher_distill_config is not None:
                    strategy.append('single_teacher_dis')
                    config.append(single_teacher_distill_config)
                else:
                    strategy.append('multi_teacher_dis')
                    config.append(multi_teacher_distill_config)
C
ceci3 已提交
408

C
ceci3 已提交
409 410 411 412 413 414 415 416 417 418 419 420
        ### NOTE: keep quantation in the last step
        idx = -1
        if 'qat_dis' in strategy and strategy.index('qat_dis') != (
                len(strategy) - 1):
            idx = strategy.index('qat_dis')
        elif 'ptq_hpo' in strategy and strategy.index('ptq_hpo') != (
                len(strategy) - 1):
            idx = strategy.index('ptq_hpo')

        if idx != -1:
            strategy = strategy[:idx] + strategy[idx + 1:] + [strategy[idx]]
            config = config[:idx] + config[idx + 1:] + [config[idx]]
C
ceci3 已提交
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438

        return strategy, config

    def _prepare_fleet_strategy(train_config):
        build_strategy = paddle.static.BuildStrategy()
        exec_strategy = paddle.static.ExecutionStrategy()

        strategy = fleet.DistributedStrategy()
        strategy.build_strategy = build_strategy
        if train_config.recompute_config is not None:
            strategy.recompute = True
            strategy.recompute_configs = { ** train_config.recompute_config}
        if train_config.sharding_config is not None:
            strategy.sharding = True
            strategy.sharding_configs = { ** train_config.sharding_config}
        if train_config.amp_config is not None:
            strategy.amp = True
            strategy.amp_configs = { ** train_config.amp_config}
439 440
        if train_config.asp_config is not None:
            strategy.asp = True
C
ceci3 已提交
441 442
        return strategy

C
ceci3 已提交
443
    def _prepare_program(self, program, feed_target_names, fetch_targets,
C
ceci3 已提交
444 445
                         patterns, default_distill_node_pair, strategy, config,
                         train_config):
C
ceci3 已提交
446 447 448 449 450
        train_program = recover_inference_program(program)
        startup_program = paddle.static.Program()
        train_program_info = ProgramInfo(startup_program, train_program,
                                         feed_target_names, fetch_targets)

C
ceci3 已提交
451
        config_dict = config.__dict__
452 453 454
        if "prune_strategy" in config_dict and config_dict[
                "prune_strategy"] == "gmp" and config_dict[
                    'gmp_config'] is None:
Z
zhouzj 已提交
455 456 457
            _logger.info(
                "Calculating the iterations per epoch……(It will take some time)")
            # NOTE:XXX: This way of calculating the iters needs to be improved.
C
ceci3 已提交
458
            if train_config.epochs:
G
Guanghua Yu 已提交
459
                iters_per_epoch = len(list(self.train_dataloader()))
C
ceci3 已提交
460 461 462
                total_iters = train_config.epochs * iters_per_epoch
            elif train_config.train_iter:
                total_iters = train_config.train_iter
G
Guanghua Yu 已提交
463 464 465
            else:
                raise RuntimeError(
                    'train_config must has `epochs` or `train_iter` field.')
Z
zhouzj 已提交
466 467
            config_dict['gmp_config'] = {
                'stable_iterations': 0,
C
ceci3 已提交
468 469
                'pruning_iterations': max(0.45 * total_iters, 30),
                'tunning_iterations': max(0.45 * total_iters, 30),
Z
zhouzj 已提交
470
                'resume_iteration': -1,
C
ceci3 已提交
471
                'pruning_steps': 100 if (0.45 * total_iters) > 1000 else 1,
Z
zhouzj 已提交
472 473
                'initial_ratio': 0.15,
            }
C
ceci3 已提交
474 475
        ### add prune program
        self._pruner = None
C
ceci3 已提交
476
        if 'prune' in strategy:
C
ceci3 已提交
477 478
            self._pruner, train_program_info = build_prune_program(
                self._exe, self._places, config_dict, train_program_info,
C
ceci3 已提交
479
                strategy, patterns, self.eval_dataloader)
C
ceci3 已提交
480

C
ceci3 已提交
481 482
        if train_config.use_fleet:
            dist_strategy = _prepare_fleet_strategy(train_config)
C
ceci3 已提交
483 484 485 486
        else:
            dist_strategy = None

        ### add distill program
C
ceci3 已提交
487
        if 'dis' in strategy:
C
ceci3 已提交
488 489 490 491
            train_program_info, test_program_info = build_distill_program(
                self._exe,
                self._places,
                config_dict,
C
ceci3 已提交
492
                train_config.__dict__,
C
ceci3 已提交
493 494
                train_program_info,
                pruner=self._pruner,
C
ceci3 已提交
495 496
                dist_strategy=dist_strategy,
                default_distill_node_pair=default_distill_node_pair)
C
ceci3 已提交
497 498 499

        self._quant_config = None
        ### add quant_aware program, quant always is last step
C
ceci3 已提交
500
        if 'qat' in strategy:
C
ceci3 已提交
501 502 503
            train_program_info, test_program_info, self._quant_config = build_quant_program(
                self._exe, self._places, config_dict, train_program_info,
                test_program_info)
C
ceci3 已提交
504
        if train_config.sparse_model:
Z
zhouzj 已提交
505
            from ..prune.unstructured_pruner import UnstructuredPruner
Z
zhouzj 已提交
506
            # NOTE: The initialization parameter of this pruner doesn't work, it is only used to call the 'set_static_masks' function
Z
zhouzj 已提交
507 508 509 510 511 512
            self._pruner = UnstructuredPruner(
                train_program_info.program,
                mode='ratio',
                ratio=0.75,
                prune_params_type='conv1x1_only',
                place=self._places)
Z
zhouzj 已提交
513
            self._pruner.set_static_masks()  # Fixed model sparsity
C
ceci3 已提交
514 515 516

        self._exe.run(train_program_info.startup_program)

C
ceci3 已提交
517 518 519 520
        if (not train_config.use_fleet) and train_config.amp_config is not None:
            if hasattr(
                    train_config.amp_config,
                    'use_pure_fp16') and train_config.amp_config.use_pure_fp16:
C
ceci3 已提交
521 522 523
                train_program_info.optimizer.amp_init(
                    self._places, scope=paddle.static.global_scope())

C
ceci3 已提交
524
        if 'asp' in strategy:
C
ceci3 已提交
525 526 527
            ### prune weight in scope
            self._pruner.prune_model(train_program_info.program)

C
ceci3 已提交
528
        if not train_config.use_fleet:
C
ceci3 已提交
529
            train_program_info = self._compiled_program(train_program_info,
C
ceci3 已提交
530
                                                        strategy)
C
ceci3 已提交
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
            test_program_info = self._compiled_program(test_program_info,
                                                       self._strategy)
        return train_program_info, test_program_info

    def _compiled_program(self, program_info, strategy):
        compiled_prog = paddle.static.CompiledProgram(program_info.program)
        build_strategy = paddle.static.BuildStrategy()
        exec_strategy = paddle.static.ExecutionStrategy()
        if 'qat' in strategy:
            build_strategy.memory_optimize = False
            build_strategy.enable_inplace = False
            build_strategy.fuse_all_reduce_ops = False
            build_strategy.sync_batch_norm = False

        compiled_prog = compiled_prog.with_data_parallel(
            loss_name=program_info.fetch_targets[0].name,
            build_strategy=build_strategy,
            exec_strategy=exec_strategy)
        program_info.program = compiled_prog
        return program_info

552
    def create_tmp_dir(self, base_dir, prefix="tmp"):
W
whs 已提交
553
        # create a new temp directory in final dir
554 555 556 557 558 559
        s_datetime = strftime("%Y-%m-%d-%H:%M:%S", gmtime())
        tmp_base_name = "_".join([prefix, str(os.getpid()), s_datetime])
        tmp_dir = os.path.join(base_dir, tmp_base_name)
        if not os.path.exists(tmp_dir):
            os.makedirs(tmp_dir)
        return tmp_dir
W
whs 已提交
560

561
    def compress(self):
562
        assert len(self._strategy) > 0
563
        self.tmp_dir = self.create_tmp_dir(self.final_dir)
564 565 566 567
        strategy = None
        config = None
        train_config = None
        strategy_idx = None
C
ceci3 已提交
568
        for strategy_idx, (
C
ceci3 已提交
569 570 571 572
                strategy, config, train_config
        ) in enumerate(zip(self._strategy, self._config, self.train_config)):
            self.single_strategy_compress(strategy, config, strategy_idx,
                                          train_config)
C
ceci3 已提交
573 574 575

        if strategy == 'ptq_hpo' and config.max_quant_count == 1 and platform.system(
        ).lower() == 'linux':
C
ceci3 已提交
576
            ptq_loss = post_quant_hpo.g_min_emd_loss
C
ceci3 已提交
577

C
ceci3 已提交
578 579
            final_quant_config = get_final_quant_config(ptq_loss,
                                                        self.model_type)
C
ceci3 已提交
580 581 582 583
            if final_quant_config is not None:
                quant_strategy, quant_config = self._prepare_strategy(
                    final_quant_config)
                self.single_strategy_compress(quant_strategy[0],
C
ceci3 已提交
584 585
                                              quant_config[0], strategy_idx,
                                              train_config)
586
        tmp_model_path = os.path.join(
W
whs 已提交
587
            self.tmp_dir, 'strategy_{}'.format(str(strategy_idx + 1)))
C
ceci3 已提交
588
        final_model_path = os.path.join(self.final_dir)
C
ceci3 已提交
589
        if paddle.distributed.get_rank() == 0:
W
whs 已提交
590 591 592 593
            for _file in os.listdir(tmp_model_path):
                _file_path = os.path.join(tmp_model_path, _file)
                if os.path.isfile(_file_path):
                    shutil.copy(_file_path, final_model_path)
W
whs 已提交
594
            shutil.rmtree(self.tmp_dir)
C
ceci3 已提交
595
            _logger.info(
G
Guanghua Yu 已提交
596
                "==> The ACT compression has been completed and the final model is saved in `{}`".
C
ceci3 已提交
597
                format(final_model_path))
C
ceci3 已提交
598 599
        os._exit(0)

C
ceci3 已提交
600 601
    def single_strategy_compress(self, strategy, config, strategy_idx,
                                 train_config):
602 603 604 605 606 607 608
        # start compress, including train/eval model
        # TODO: add the emd loss of evaluation model.
        if strategy == 'quant_post':
            quant_post(
                self._exe,
                model_dir=self.model_dir,
                quantize_model_path=os.path.join(
W
whs 已提交
609
                    self.tmp_dir, 'strategy_{}'.format(str(strategy_idx + 1))),
610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
                data_loader=self.train_dataloader,
                model_filename=self.model_filename,
                params_filename=self.params_filename,
                save_model_filename=self.model_filename,
                save_params_filename=self.params_filename,
                batch_size=1,
                batch_nums=config.batch_num,
                algo=config.ptq_algo,
                round_type='round',
                bias_correct=config.bias_correct,
                hist_percent=config.hist_percent,
                quantizable_op_type=config.quantize_op_types,
                is_full_quantize=config.is_full_quantize,
                weight_bits=config.weight_bits,
                activation_bits=config.activation_bits,
                activation_quantize_type='range_abs_max',
                weight_quantize_type=config.weight_quantize_type,
                onnx_format=False)

        elif strategy == 'ptq_hpo':
630 631 632 633
            if platform.system().lower() != 'linux':
                raise NotImplementedError(
                    "post-quant-hpo is not support in system other than linux")

C
ceci3 已提交
634
            post_quant_hpo.quant_post_hpo(
C
ceci3 已提交
635 636 637
                self._exe,
                self._places,
                model_dir=self.model_dir,
C
ceci3 已提交
638
                quantize_model_path=os.path.join(
W
whs 已提交
639
                    self.tmp_dir, 'strategy_{}'.format(str(strategy_idx + 1))),
C
ceci3 已提交
640 641 642 643 644 645 646
                train_dataloader=self.train_dataloader,
                eval_dataloader=self.eval_dataloader,
                eval_function=self.eval_function,
                model_filename=self.model_filename,
                params_filename=self.params_filename,
                save_model_filename=self.model_filename,
                save_params_filename=self.params_filename,
C
ceci3 已提交
647 648 649 650 651 652 653 654
                quantizable_op_type=config.quantize_op_types,
                weight_bits=config.weight_bits,
                activation_bits=config.activation_bits,
                weight_quantize_type=config.weight_quantize_type,
                is_full_quantize=config.is_full_quantize,
                algo=config.ptq_algo,
                bias_correct=config.bias_correct,
                hist_percent=config.hist_percent,
C
ceci3 已提交
655
                batch_size=[1],
C
ceci3 已提交
656 657
                batch_num=config.batch_num,
                runcount_limit=config.max_quant_count)
C
ceci3 已提交
658 659

        else:
C
ceci3 已提交
660 661 662 663 664 665
            assert 'dis' in strategy, "Only support optimizer compressed model by distillation loss."

            if strategy_idx == 0:
                model_dir = self.model_dir
            else:
                model_dir = os.path.join(
W
whs 已提交
666
                    self.tmp_dir, 'strategy_{}'.format(str(strategy_idx)))
C
ceci3 已提交
667

C
ceci3 已提交
668 669
            [inference_program, feed_target_names, fetch_targets]= load_inference_model( \
                model_dir, \
C
ceci3 已提交
670 671 672 673
                model_filename=self.model_filename, params_filename=self.params_filename,
                executor=self._exe)

            ### used to check whether the dataloader is right
C
ceci3 已提交
674
            self.metric_before_compressed = None
C
ceci3 已提交
675
            if self.eval_function is not None and train_config.origin_metric is not None:
C
ceci3 已提交
676
                _logger.info("start to test metric before compress")
C
ceci3 已提交
677 678 679 680
                metric = self.eval_function(self._exe, inference_program,
                                            feed_target_names, fetch_targets)
                _logger.info("metric of compressed model is: {}".format(metric))
                buf = 0.05
C
ceci3 已提交
681 682
                if metric < (float(train_config.origin_metric) - buf) or \
                        metric > (float(train_config.origin_metric) + buf):
C
ceci3 已提交
683 684 685 686
                    raise RuntimeError("target metric of pretrained model is {}, \
                          but now is {}, Please check the format of evaluation dataset \
                          or check the origin_metric in train_config"
                                                                     .format(\
C
ceci3 已提交
687
                          train_config.origin_metric, metric))
C
ceci3 已提交
688 689 690 691
                self.metric_before_compressed = metric

            patterns, default_distill_node_pair, _ = get_patterns(
                inference_program)
C
ceci3 已提交
692 693

            train_program_info, test_program_info = self._prepare_program(
C
ceci3 已提交
694
                inference_program, feed_target_names, fetch_targets, patterns,
C
ceci3 已提交
695
                default_distill_node_pair, strategy, config, train_config)
Z
zhouzj 已提交
696 697 698
            if 'unstructure' in self._strategy:
                test_program_info.program._program = remove_unused_var_nodes(
                    test_program_info.program._program)
C
ceci3 已提交
699 700
            test_program_info = self._start_train(
                train_program_info, test_program_info, strategy, train_config)
C
ceci3 已提交
701
            self._save_model(test_program_info, strategy, strategy_idx)
C
ceci3 已提交
702

C
ceci3 已提交
703 704
    def _start_train(self, train_program_info, test_program_info, strategy,
                     train_config):
C
ceci3 已提交
705
        best_metric = -1.0
C
ceci3 已提交
706
        total_epochs = train_config.epochs if train_config.epochs else 100
G
Guanghua Yu 已提交
707
        total_train_iter = 0
G
Guanghua Yu 已提交
708
        for epoch_id in range(total_epochs):
C
ceci3 已提交
709 710 711 712
            for batch_id, data in enumerate(self.train_dataloader()):
                np_probs_float, = self._exe.run(train_program_info.program, \
                    feed=data, \
                    fetch_list=train_program_info.fetch_targets)
713 714
                if not isinstance(train_program_info.learning_rate, float):
                    train_program_info.learning_rate.step()
C
ceci3 已提交
715
                if 'unstructure' in strategy:
C
ceci3 已提交
716 717
                    self._pruner.step()

C
ceci3 已提交
718
                if train_config.logging_iter is None:
C
ceci3 已提交
719 720
                    logging_iter = 10
                else:
C
ceci3 已提交
721
                    logging_iter = train_config.logging_iter
C
ceci3 已提交
722
                if batch_id % int(logging_iter) == 0:
G
Guanghua Yu 已提交
723 724 725 726 727
                    _logger.info(
                        "Total iter: {}, epoch: {}, batch: {}, loss: {}".format(
                            total_train_iter, epoch_id, batch_id,
                            np_probs_float))
                total_train_iter += 1
C
ceci3 已提交
728 729
                if total_train_iter % int(
                        train_config.eval_iter) == 0 and total_train_iter != 0:
C
ceci3 已提交
730 731 732
                    if self.eval_function is not None:

                        # GMP pruner step 3: update params before summrizing sparsity, saving model or evaluation. 
C
ceci3 已提交
733
                        if 'unstructure' in strategy:
C
ceci3 已提交
734 735 736 737 738 739 740 741 742 743
                            self._pruner.update_params()

                        metric = self.eval_function(
                            self._exe, test_program_info.program,
                            test_program_info.feed_target_names,
                            test_program_info.fetch_targets)

                        if metric > best_metric:
                            paddle.static.save(
                                program=test_program_info.program._program,
W
whs 已提交
744
                                model_path=os.path.join(self.tmp_dir,
C
ceci3 已提交
745
                                                        'best_model'))
C
ceci3 已提交
746
                            best_metric = metric
747 748 749
                            _logger.info(
                                "epoch: {} metric of compressed model is: {:.6f}, best metric of compressed model is {:.6f}".
                                format(epoch_id, metric, best_metric))
C
ceci3 已提交
750 751 752 753 754
                            if self.metric_before_compressed is not None and float(
                                    abs(best_metric -
                                        self.metric_before_compressed)
                            ) / self.metric_before_compressed <= 0.005:
                                break
755 756 757 758
                        else:
                            _logger.info(
                                "epoch: {} metric of compressed model is: {:.6f}, best metric of compressed model is {:.6f}".
                                format(epoch_id, metric, best_metric))
C
ceci3 已提交
759 760
                        if train_config.target_metric is not None:
                            if metric > float(train_config.target_metric):
C
ceci3 已提交
761
                                break
C
ceci3 已提交
762 763

                    else:
764 765 766
                        _logger.warning(
                            "Not set eval function, so unable to test accuracy performance."
                        )
C
ceci3 已提交
767
                if train_config.train_iter and total_train_iter >= train_config.train_iter:
768
                    epoch_id = total_epochs
G
Guanghua Yu 已提交
769
                    break
C
ceci3 已提交
770

C
ceci3 已提交
771
        if 'unstructure' in self._strategy or train_config.sparse_model:
Z
zhouzj 已提交
772 773
            self._pruner.update_params()

C
ceci3 已提交
774 775
        return test_program_info

C
ceci3 已提交
776
    def _save_model(self, test_program_info, strategy, strategy_idx):
C
ceci3 已提交
777 778 779
        test_program = test_program_info.program._program if isinstance(
            test_program_info.program,
            paddle.static.CompiledProgram) else test_program_info.program
C
ceci3 已提交
780

W
whs 已提交
781
        if os.path.exists(os.path.join(self.tmp_dir, 'best_model.pdparams')):
782
            paddle.static.load(test_program,
W
whs 已提交
783 784 785 786
                               os.path.join(self.tmp_dir, 'best_model'))
            os.remove(os.path.join(self.tmp_dir, 'best_model.pdmodel'))
            os.remove(os.path.join(self.tmp_dir, 'best_model.pdopt'))
            os.remove(os.path.join(self.tmp_dir, 'best_model.pdparams'))
C
ceci3 已提交
787 788

        if 'qat' in strategy:
G
Guanghua Yu 已提交
789
            test_program, int8_program = convert(test_program, self._places, self._quant_config, \
C
ceci3 已提交
790 791 792
                                          scope=paddle.static.global_scope(), \
                                          save_int8=True)

W
whs 已提交
793
        model_dir = os.path.join(self.tmp_dir,
C
ceci3 已提交
794 795 796
                                 'strategy_{}'.format(str(strategy_idx + 1)))
        if not os.path.exists(model_dir):
            os.makedirs(model_dir)
C
ceci3 已提交
797 798 799 800 801
        feed_vars = [
            test_program.global_block().var(name)
            for name in test_program_info.feed_target_names
        ]

802 803 804 805 806 807 808 809
        model_name = None
        if self.model_filename is None:
            model_name = "model"
        elif self.model_filename.endswith(".pdmodel"):
            model_name = self.model_filename.rsplit(".", 1)[0]
        else:
            model_name = self.model_filename

C
ceci3 已提交
810
        path_prefix = os.path.join(model_dir, model_name)
C
ceci3 已提交
811
        paddle.static.save_inference_model(
C
ceci3 已提交
812
            path_prefix=path_prefix,
C
ceci3 已提交
813 814
            feed_vars=feed_vars,
            fetch_vars=test_program_info.fetch_targets,
C
ceci3 已提交
815
            executor=self._exe,
C
ceci3 已提交
816
            program=test_program)