README.md 6.2 KB
Newer Older
G
Guanghua Yu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
# YOLOv7自动压缩示例

目录:
- [1.简介](#1简介)
- [2.Benchmark](#2Benchmark)
- [3.开始自动压缩](#自动压缩流程)
  - [3.1 环境准备](#31-准备环境)
  - [3.2 准备数据集](#32-准备数据集)
  - [3.3 准备预测模型](#33-准备预测模型)
  - [3.4 测试模型精度](#34-测试模型精度)
  - [3.5 自动压缩并产出模型](#35-自动压缩并产出模型)
- [4.预测部署](#4预测部署)
- [5.FAQ](5FAQ)

## 1. 简介

飞桨模型转换工具[X2Paddle](https://github.com/PaddlePaddle/X2Paddle)支持将```Caffe/TensorFlow/ONNX/PyTorch```的模型一键转为飞桨(PaddlePaddle)的预测模型。借助X2Paddle的能力,各种框架的推理模型可以很方便的使用PaddleSlim的自动化压缩功能。

本示例将以[WongKinYiu/yolov7](https://github.com/WongKinYiu/yolov7)目标检测模型为例,将PyTorch框架模型转换为Paddle框架模型,再使用ACT自动压缩功能进行自动压缩。本示例使用的自动压缩策略为量化训练。

## 2.Benchmark

| 模型  |  策略  | 输入尺寸 | mAP<sup>val<br>0.5:0.95 | 预测时延<sup><small>FP32</small><sup><br><sup>(ms) |预测时延<sup><small>FP16</small><sup><br><sup>(ms) | 预测时延<sup><small>INT8</small><sup><br><sup>(ms) |  配置文件 | Inference模型  |
| :-------- |:-------- |:--------: | :---------------------: | :----------------: | :----------------: | :---------------: | :-----------------------------: | :-----------------------------: |
| YOLOv7 |  Base模型 | 640*640  |  51.1   |   26.84ms  |   7.44ms   |  -  |  - | [Model](https://bj.bcebos.com/v1/paddle-slim-models/act/yolov7_infer.tar) |
| YOLOv7 |  KL离线量化 | 640*640  |  50.2   |   - |   -   |  4.55ms  |  - | - |
| YOLOv7 |  量化蒸馏训练 | 640*640  |  **50.8**   |   - |   -   |  **4.55ms**  |  [config](./configs/yolov7_qat_dis.yaml) | [Model](https://bj.bcebos.com/v1/paddle-slim-models/act/yolov7_quant.tar) |

说明:
- mAP的指标均在COCO val2017数据集中评测得到。
- YOLOv7模型在Tesla T4的GPU环境下开启TensorRT 8.4.1,batch_size=1, 测试脚本是[cpp_infer](./cpp_infer)

## 3. 自动压缩流程

#### 3.1 准备环境
- PaddlePaddle >= 2.3 (可从[Paddle官网](https://www.paddlepaddle.org.cn/install/quick?docurl=/documentation/docs/zh/install/pip/linux-pip.html)下载安装)
- PaddleSlim > 2.3版本
- PaddleDet >= 2.4
- [X2Paddle](https://github.com/PaddlePaddle/X2Paddle) >= 1.3.6
- opencv-python

(1)安装paddlepaddle:
```shell
# CPU
pip install paddlepaddle
# GPU
pip install paddlepaddle-gpu
```

(2)安装paddleslim:
```shell
pip install paddleslim
```

(3)安装paddledet:
```shell
pip install paddledet
```

注:安装PaddleDet的目的只是为了直接使用PaddleDetection中的Dataloader组件。

(4)安装X2Paddle的1.3.6以上版本:
```shell
pip install x2paddle sympy onnx
```

#### 3.2 准备数据集

本案例默认以COCO数据进行自动压缩实验,并且依赖PaddleDetection中数据读取模块,如果自定义COCO数据,或者其他格式数据,请参考[PaddleDetection数据准备文档](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.4/docs/tutorials/PrepareDataSet.md) 来准备数据。

如果已经准备好数据集,请直接修改[./configs/yolov7_reader.yml]中`EvalDataset``dataset_dir`字段为自己数据集路径即可。


#### 3.3 准备预测模型

(1)准备ONNX模型:

可通过[WongKinYiu/yolov7](https://github.com/WongKinYiu/yolov7)的导出脚本来准备ONNX模型,具体步骤如下:
```shell
git clone https://github.com/WongKinYiu/yolov7.git
# 切换分支到u5分支,保持导出的ONNX模型后处理和YOLOv5一致
git checkout u5
# 下载好yolov7.pt权重后执行:
python export.py --weights yolov7.pt --include onnx
```

也可以直接下载我们已经准备好的[yolov7.onnx](https://paddle-slim-models.bj.bcebos.com/act/yolov7.onnx)


(2) 转换模型:
```
x2paddle --framework=onnx --model=yolov7.onnx --save_dir=pd_model
cp -r pd_model/inference_model/ yolov7_infer
```
即可得到YOLOv7模型的预测模型(`model.pdmodel``model.pdiparams`)。如想快速体验,可直接下载上方表格中YOLOv7的[Paddle预测模型](https://bj.bcebos.com/v1/paddle-slim-models/act/yolov7_infer.tar)


预测模型的格式为:`model.pdmodel``model.pdiparams`两个,带`pdmodel`的是模型文件,带`pdiparams`后缀的是权重文件。


#### 3.4 自动压缩并产出模型

蒸馏量化自动压缩示例通过run.py脚本启动,会使用接口```paddleslim.auto_compression.AutoCompression```对模型进行自动压缩。配置config文件中模型路径、蒸馏、量化、和训练等部分的参数,配置完成后便可对模型进行量化和蒸馏。具体运行命令为:

- 单卡训练:
```
export CUDA_VISIBLE_DEVICES=0
python run.py --config_path=./configs/yolov7_qat_dis.yaml --save_dir='./output/'
```

- 多卡训练:
```
CUDA_VISIBLE_DEVICES=0,1,2,3 python -m paddle.distributed.launch --log_dir=log --gpus 0,1,2,3 run.py \
          --config_path=./configs/yolov7_qat_dis.yaml --save_dir='./output/'
```

#### 3.5 测试模型精度

修改[yolov7_qat_dis.yaml](./configs/yolov7_qat_dis.yaml)`model_dir`字段为模型存储路径,然后使用eval.py脚本得到模型的mAP:
```
export CUDA_VISIBLE_DEVICES=0
python eval.py --config_path=./configs/yolov7_qat_dis.yaml
```


## 4.预测部署

#### Paddle-TensorRT C++部署

进入[cpp_infer](./cpp_infer)文件夹内,请按照[C++ TensorRT Benchmark测试教程](./cpp_infer/README.md)进行准备环境及编译,然后开始测试:
```shell
# 编译
bash complie.sh
# 执行
./build/trt_run --model_file yolov7_quant/model.pdmodel --params_file yolov7_quant/model.pdiparams --run_mode=trt_int8
```

#### Paddle-TensorRT Python部署:

首先安装带有TensorRT的[Paddle安装包](https://www.paddlepaddle.org.cn/inference/v2.3/user_guides/download_lib.html#python)

然后使用[paddle_trt_infer.py](./paddle_trt_infer.py)进行部署:
```shell
python paddle_trt_infer.py --model_path=output --image_file=images/000000570688.jpg --benchmark=True --run_mode=trt_int8
```

## 5.FAQ

- 如果想测试离线量化模型精度,可执行:
```shell
python post_quant.py --config_path=./configs/yolov7_qat_dis.yaml
```