test_ptq.py 6.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
# Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import sys
sys.path.append("../../")
import unittest
import logging
import paddle
import paddle.nn as nn
import paddle.fluid as fluid
from paddle.fluid.log_helper import get_logger
import paddle.vision.transforms as T

from paddleslim import PTQ

_logger = get_logger(
    __name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s')


class ImperativeLenet(nn.Layer):
    def __init__(self, num_classes=10, classifier_activation='softmax'):
        super(ImperativeLenet, self).__init__()
        self.features = paddle.nn.Sequential(
            paddle.nn.Conv2D(
                in_channels=1,
                out_channels=6,
                kernel_size=3,
                stride=1,
                padding=1),
            paddle.nn.AvgPool2D(
                kernel_size=2, stride=2),
            paddle.nn.Conv2D(
                in_channels=6,
                out_channels=16,
                kernel_size=5,
                stride=1,
                padding=0),
            paddle.nn.AvgPool2D(
                kernel_size=2, stride=2))

        self.fc = paddle.nn.Sequential(
            paddle.nn.Linear(
                in_features=400, out_features=120),
            paddle.nn.Linear(
                in_features=120, out_features=84),
            paddle.nn.Linear(
                in_features=84, out_features=num_classes), )

    def forward(self, inputs):
        x = self.features(inputs)

        x = paddle.flatten(x, 1)
        x = self.fc(x)
        return x


class TestPTQ(unittest.TestCase):
    """
    Test dygraph post training quantization.
    """

    def calibrate(self, model, test_reader, batch_num=10):
        model.eval()
        for batch_id, data in enumerate(test_reader):
            img = paddle.to_tensor(data[0])
            img = paddle.reshape(img, [-1, 1, 28, 28])

            out = model(img)

            if batch_num + 1 >= batch_num:
                break

    def model_test(self, model, test_reader):
        model.eval()
        avg_acc = [[], []]
        for batch_id, data in enumerate(test_reader):
            img = paddle.to_tensor(data[0])
            img = paddle.reshape(img, [-1, 1, 28, 28])
            label = paddle.to_tensor(data[1])
            label = paddle.reshape(label, [-1, 1])

            out = model(img)

            acc_top1 = paddle.metric.accuracy(input=out, label=label, k=1)
            acc_top5 = paddle.metric.accuracy(input=out, label=label, k=5)
            avg_acc[0].append(acc_top1.numpy())
            avg_acc[1].append(acc_top5.numpy())

            if batch_id % 100 == 0:
                _logger.info("Test | step {}: acc1 = {:}, acc5 = {:}".format(
                    batch_id, acc_top1.numpy(), acc_top5.numpy()))

        _logger.info("Test |Average: acc_top1 {}, acc_top5 {}".format(
            np.mean(avg_acc[0]), np.mean(avg_acc[1])))
        return np.mean(avg_acc[0]), np.mean(avg_acc[1])

    def model_train(self, model, train_reader):
        adam = paddle.optimizer.Adam(
            learning_rate=0.0001, parameters=model.parameters())
        epoch_num = 1
        for epoch in range(epoch_num):
            model.train()
            for batch_id, data in enumerate(train_reader):
                img = paddle.to_tensor(data[0])
                label = paddle.to_tensor(data[1])
                img = paddle.reshape(img, [-1, 1, 28, 28])
                label = paddle.reshape(label, [-1, 1])

                out = model(img)
                acc = paddle.metric.accuracy(out, label)
                loss = paddle.nn.functional.loss.cross_entropy(out, label)
                avg_loss = paddle.mean(loss)
                avg_loss.backward()
                adam.minimize(avg_loss)
                model.clear_gradients()
                if batch_id % 100 == 0:
                    _logger.info(
                        "Train | At epoch {} step {}: loss = {:}, acc= {:}".
                        format(epoch, batch_id, avg_loss.numpy(), acc.numpy()))

    def test_ptq(self):
        seed = 1
        np.random.seed(seed)
        paddle.static.default_main_program().random_seed = seed
        paddle.static.default_startup_program().random_seed = seed

        _logger.info("create the fp32 model")
        fp32_lenet = ImperativeLenet()

        _logger.info("prepare data")
        batch_size = 64
        transform = T.Compose([T.Transpose(), T.Normalize([127.5], [127.5])])
        train_dataset = paddle.vision.datasets.MNIST(
            mode='train', backend='cv2', transform=transform)
        val_dataset = paddle.vision.datasets.MNIST(
            mode='test', backend='cv2', transform=transform)

        place = paddle.CUDAPlace(0) \
            if paddle.is_compiled_with_cuda() else paddle.CPUPlace()
        train_reader = paddle.io.DataLoader(
            train_dataset,
            drop_last=True,
            places=place,
            batch_size=batch_size,
            return_list=True)
        test_reader = paddle.io.DataLoader(
            val_dataset, places=place, batch_size=batch_size, return_list=True)

        _logger.info("train the fp32 model")
        self.model_train(fp32_lenet, train_reader)

        _logger.info("test fp32 model")
        fp32_top1, fp32_top5 = self.model_test(fp32_lenet, test_reader)

        _logger.info("quantize the fp32 model")
        quanter = PTQ()
        quant_lenet = quanter.quantize(fp32_lenet)

        _logger.info("calibrate")
        self.calibrate(quant_lenet, test_reader)

        _logger.info("save and test the quantized model")
        save_path = "./tmp/model"
        input_spec = paddle.static.InputSpec(
            shape=[None, 1, 28, 28], dtype='float32')
        quanter.save_quantized_model(
            quant_lenet, save_path, input_spec=[input_spec])
        quant_top1, quant_top5 = self.model_test(quant_lenet, test_reader)

        _logger.info("FP32 acc: top1: {}, top5: {}".format(fp32_top1,
                                                           fp32_top5))
        _logger.info("Int acc: top1: {}, top5: {}".format(quant_top1,
                                                          quant_top5))

        diff = 0.002
        self.assertTrue(
            fp32_top1 - quant_top1 < diff,
            msg="The acc of quant model is too lower than fp32 model")


if __name__ == '__main__':
    unittest.main()