TRAIN_CROP_SIZE: (500, 500) # (width, height), for unpadding rangescaling and stepscaling #训练时图像裁剪尺寸(宽,高) EVAL_CROP_SIZE: (500, 500) # (width, height), for unpadding rangescaling and stepscaling #验证时图像裁剪尺寸(宽,高) AUG: AUG_METHOD: "stepscaling" # choice unpadding rangescaling and stepscaling FIX_RESIZE_SIZE: (500, 500) # (width, height), for unpadding INF_RESIZE_VALUE: 500 # for rangescaling MAX_RESIZE_VALUE: 600 # for rangescaling MIN_RESIZE_VALUE: 400 # for rangescaling MAX_SCALE_FACTOR: 1.25 # for stepscaling MIN_SCALE_FACTOR: 0.75 # for stepscaling SCALE_STEP_SIZE: 0.05 # for stepscaling MIRROR: True FLIP: True BATCH_SIZE: 16 #批处理大小 DATASET: DATA_DIR: "./dataset/VOCtrainval_11-May-2012/VOC2012/" #图片路径 IMAGE_TYPE: "rgb" # choice rgb or rgba #图片类别“RGB” NUM_CLASSES: 21 #类别数(包括背景类别) TEST_FILE_LIST: "dataset/VOCtrainval_11-May-2012/VOC2012/ImageSets/Segmentation/val.list" TRAIN_FILE_LIST: "dataset/VOCtrainval_11-May-2012/VOC2012/ImageSets/Segmentation/train.list" VAL_FILE_LIST: "dataset/VOCtrainval_11-May-2012/VOC2012/ImageSets/Segmentation/val.list" IGNORE_INDEX: 255 SEPARATOR: " " MODEL: MODEL_NAME: "deeplabv3p" DEFAULT_NORM_TYPE: "bn" #指定norm的类型,此处提供bn和gn(默认)两种选择,分别指batch norm和group norm。 DEEPLAB: BACKBONE: "mobilenetv2" DEPTH_MULTIPLIER: 1.0 ENCODER_WITH_ASPP: False ENABLE_DECODER: False TRAIN: PRETRAINED_MODEL_DIR: "./pretrained_model/deeplabv3p_mobilenetv2-1-0_bn_coco/" MODEL_SAVE_DIR: "./saved_model/lovasz-softmax-voc" #模型保存路径 SNAPSHOT_EPOCH: 10 TEST: TEST_MODEL: "./saved_model/lovasz-softmax-voc/final" #为测试模型路径 SOLVER: NUM_EPOCHS: 100 #训练epoch数,正整数 LR: 0.0001 #初始学习率 LR_POLICY: "poly" #学习率下降方法, 选项为poly、piecewise和cosine OPTIMIZER: "sgd" #优化算法, 选项为sgd和adam LOSS: ["lovasz_softmax_loss","softmax_loss"] LOSS_WEIGHT: LOVASZ_SOFTMAX_LOSS: 0.2 SOFTMAX_LOSS: 0.8