EVAL_CROP_SIZE: (1025, 1025) # (width, height), for unpadding rangescaling and stepscaling TRAIN_CROP_SIZE: (769, 769) # (width, height), for unpadding rangescaling and stepscaling AUG: AUG_METHOD: u"stepscaling" # choice unpadding rangescaling and stepscaling FIX_RESIZE_SIZE: (640, 640) # (width, height), for unpadding INF_RESIZE_VALUE: 500 # for rangescaling MAX_RESIZE_VALUE: 600 # for rangescaling MIN_RESIZE_VALUE: 400 # for rangescaling MAX_SCALE_FACTOR: 2.0 # for stepscaling MIN_SCALE_FACTOR: 0.5 # for stepscaling SCALE_STEP_SIZE: 0.25 # for stepscaling FLIP: True BATCH_SIZE: 24 DATASET: DATA_DIR: "./dataset/MiniDeepGlobeRoadExtraction/" IMAGE_TYPE: "rgb" # choice rgb or rgba NUM_CLASSES: 2 TEST_FILE_LIST: "dataset/MiniDeepGlobeRoadExtraction/val.txt" TRAIN_FILE_LIST: "dataset/MiniDeepGlobeRoadExtraction/train.txt" VAL_FILE_LIST: "dataset/MiniDeepGlobeRoadExtraction/val.txt" IGNORE_INDEX: 255 SEPARATOR: '|' FREEZE: MODEL_FILENAME: "model" PARAMS_FILENAME: "params" SAVE_DIR: "freeze_model" MODEL: DEFAULT_NORM_TYPE: "bn" MODEL_NAME: "deeplabv3p" DEEPLAB: BACKBONE: "mobilenetv2" DEPTH_MULTIPLIER: 1.0 ENCODER_WITH_ASPP: False ENABLE_DECODER: False TEST: TEST_MODEL: "./saved_model/lovasz_hinge_deeplabv3p_mobilenet_road/final" TRAIN: MODEL_SAVE_DIR: "./saved_model/lovasz_hinge_deeplabv3p_mobilenet_road/" PRETRAINED_MODEL_DIR: "./pretrained_model/deeplabv3p_mobilenetv2-1-0_bn_coco/" SNAPSHOT_EPOCH: 10 SOLVER: LR: 0.1 LR_POLICY: "poly" OPTIMIZER: "sgd" NUM_EPOCHS: 300 LOSS: ["lovasz_hinge_loss","bce_loss"] LOSS_WEIGHT: LOVASZ_HINGE_LOSS: 0.5 BCE_LOSS: 0.5