# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import math import numpy as np import paddle import paddle.fluid as fluid from paddle.fluid.param_attr import ParamAttr from paddle.fluid.layer_helper import LayerHelper from paddle.fluid.dygraph.nn import Conv2D, Pool2D, Linear, Dropout from paddle.nn import SyncBatchNorm as BatchNorm from dygraph.utils import utils from dygraph.models.architectures import layer_utils from dygraph.cvlibs import manager from dygraph.utils import utils __all__ = [ "ResNet18_vd", "ResNet34_vd", "ResNet50_vd", "ResNet101_vd", "ResNet152_vd" ] class ConvBNLayer(fluid.dygraph.Layer): def __init__( self, num_channels, num_filters, filter_size, stride=1, dilation=1, groups=1, is_vd_mode=False, act=None, name=None, ): super(ConvBNLayer, self).__init__() self.is_vd_mode = is_vd_mode self._pool2d_avg = Pool2D( pool_size=2, pool_stride=2, pool_padding=0, pool_type='avg', ceil_mode=True) self._conv = Conv2D( num_channels=num_channels, num_filters=num_filters, filter_size=filter_size, stride=stride, padding=(filter_size - 1) // 2 if dilation == 1 else 0, dilation=dilation, groups=groups, act=None, param_attr=ParamAttr(name=name + "_weights"), bias_attr=False) if name == "conv1": bn_name = "bn_" + name else: bn_name = "bn" + name[3:] self._batch_norm = BatchNorm( num_filters, weight_attr=ParamAttr(name=bn_name + '_scale'), bias_attr=ParamAttr(bn_name + '_offset')) self._act_op = layer_utils.Activation(act=act) def forward(self, inputs): if self.is_vd_mode: inputs = self._pool2d_avg(inputs) y = self._conv(inputs) y = self._batch_norm(y) y = self._act_op(y) return y class BottleneckBlock(fluid.dygraph.Layer): def __init__(self, num_channels, num_filters, stride, shortcut=True, if_first=False, dilation=1, name=None): super(BottleneckBlock, self).__init__() self.conv0 = ConvBNLayer( num_channels=num_channels, num_filters=num_filters, filter_size=1, act='relu', name=name + "_branch2a") self.dilation = dilation self.conv1 = ConvBNLayer( num_channels=num_filters, num_filters=num_filters, filter_size=3, stride=stride, act='relu', dilation=dilation, name=name + "_branch2b") self.conv2 = ConvBNLayer( num_channels=num_filters, num_filters=num_filters * 4, filter_size=1, act=None, name=name + "_branch2c") if not shortcut: self.short = ConvBNLayer( num_channels=num_channels, num_filters=num_filters * 4, filter_size=1, stride=1, is_vd_mode=False if if_first or stride == 1 else True, name=name + "_branch1") self.shortcut = shortcut def forward(self, inputs): y = self.conv0(inputs) #################################################################### # If given dilation rate > 1, using corresponding padding if self.dilation > 1: padding = self.dilation y = fluid.layers.pad( y, [0, 0, 0, 0, padding, padding, padding, padding]) ##################################################################### conv1 = self.conv1(y) conv2 = self.conv2(conv1) if self.shortcut: short = inputs else: short = self.short(inputs) y = fluid.layers.elementwise_add(x=short, y=conv2) layer_helper = LayerHelper(self.full_name(), act='relu') return layer_helper.append_activation(y) class BasicBlock(fluid.dygraph.Layer): def __init__(self, num_channels, num_filters, stride, shortcut=True, if_first=False, name=None): super(BasicBlock, self).__init__() self.stride = stride self.conv0 = ConvBNLayer( num_channels=num_channels, num_filters=num_filters, filter_size=3, stride=stride, act='relu', name=name + "_branch2a") self.conv1 = ConvBNLayer( num_channels=num_filters, num_filters=num_filters, filter_size=3, act=None, name=name + "_branch2b") if not shortcut: self.short = ConvBNLayer( num_channels=num_channels, num_filters=num_filters, filter_size=1, stride=1, is_vd_mode=False if if_first else True, name=name + "_branch1") self.shortcut = shortcut def forward(self, inputs): y = self.conv0(inputs) conv1 = self.conv1(y) if self.shortcut: short = inputs else: short = self.short(inputs) y = fluid.layers.elementwise_add(x=short, y=conv1) layer_helper = LayerHelper(self.full_name(), act='relu') return layer_helper.append_activation(y) class ResNet_vd(fluid.dygraph.Layer): def __init__(self, backbone_pretrained=None, layers=50, class_dim=1000, output_stride=None, multi_grid=(1, 2, 4), **kwargs): super(ResNet_vd, self).__init__() self.layers = layers supported_layers = [18, 34, 50, 101, 152, 200] assert layers in supported_layers, \ "supported layers are {} but input layer is {}".format( supported_layers, layers) if layers == 18: depth = [2, 2, 2, 2] elif layers == 34 or layers == 50: depth = [3, 4, 6, 3] elif layers == 101: depth = [3, 4, 23, 3] elif layers == 152: depth = [3, 8, 36, 3] elif layers == 200: depth = [3, 12, 48, 3] num_channels = [64, 256, 512, 1024 ] if layers >= 50 else [64, 64, 128, 256] num_filters = [64, 128, 256, 512] dilation_dict = None if output_stride == 8: dilation_dict = {2: 2, 3: 4} elif output_stride == 16: dilation_dict = {3: 2} self.conv1_1 = ConvBNLayer( num_channels=3, num_filters=32, filter_size=3, stride=2, act='relu', name="conv1_1") self.conv1_2 = ConvBNLayer( num_channels=32, num_filters=32, filter_size=3, stride=1, act='relu', name="conv1_2") self.conv1_3 = ConvBNLayer( num_channels=32, num_filters=64, filter_size=3, stride=1, act='relu', name="conv1_3") self.pool2d_max = Pool2D( pool_size=3, pool_stride=2, pool_padding=1, pool_type='max') # self.block_list = [] self.stage_list = [] if layers >= 50: for block in range(len(depth)): shortcut = False block_list = [] for i in range(depth[block]): if layers in [101, 152] and block == 2: if i == 0: conv_name = "res" + str(block + 2) + "a" else: conv_name = "res" + str(block + 2) + "b" + str(i) else: conv_name = "res" + str(block + 2) + chr(97 + i) ############################################################################### # Add dilation rate for some segmentation tasks, if dilation_dict is not None. dilation_rate = dilation_dict[ block] if dilation_dict and block in dilation_dict else 1 # Actually block here is 'stage', and i is 'block' in 'stage' # At the stage 4, expand the the dilation_rate using multi_grid, default (1, 2, 4) if block == 3: dilation_rate = dilation_rate * multi_grid[i] #print("stage {}, block {}: dilation rate".format(block, i), dilation_rate) ############################################################################### bottleneck_block = self.add_sublayer( 'bb_%d_%d' % (block, i), BottleneckBlock( num_channels=num_channels[block] if i == 0 else num_filters[block] * 4, num_filters=num_filters[block], stride=2 if i == 0 and block != 0 and dilation_rate == 1 else 1, shortcut=shortcut, if_first=block == i == 0, name=conv_name, dilation=dilation_rate)) block_list.append(bottleneck_block) shortcut = True self.stage_list.append(block_list) else: for block in range(len(depth)): shortcut = False block_list = [] for i in range(depth[block]): conv_name = "res" + str(block + 2) + chr(97 + i) basic_block = self.add_sublayer( 'bb_%d_%d' % (block, i), BasicBlock( num_channels=num_channels[block] if i == 0 else num_filters[block], num_filters=num_filters[block], stride=2 if i == 0 and block != 0 else 1, shortcut=shortcut, if_first=block == i == 0, name=conv_name)) block_list.append(basic_block) shortcut = True self.stage_list.append(block_list) self.pool2d_avg = Pool2D( pool_size=7, pool_type='avg', global_pooling=True) self.pool2d_avg_channels = num_channels[-1] * 2 stdv = 1.0 / math.sqrt(self.pool2d_avg_channels * 1.0) self.out = Linear( self.pool2d_avg_channels, class_dim, param_attr=ParamAttr( initializer=fluid.initializer.Uniform(-stdv, stdv), name="fc_0.w_0"), bias_attr=ParamAttr(name="fc_0.b_0")) self.init_weight(backbone_pretrained) def forward(self, inputs): y = self.conv1_1(inputs) y = self.conv1_2(y) y = self.conv1_3(y) y = self.pool2d_max(y) # A feature list saves the output feature map of each stage. feat_list = [] for i, stage in enumerate(self.stage_list): for j, block in enumerate(stage): y = block(y) #print("stage {} block {}".format(i+1, j+1), y.shape) feat_list.append(y) y = self.pool2d_avg(y) y = fluid.layers.reshape(y, shape=[-1, self.pool2d_avg_channels]) y = self.out(y) return y, feat_list # def init_weight(self, pretrained_model=None): # if pretrained_model is not None: # if os.path.exists(pretrained_model): # utils.load_pretrained_model(self, pretrained_model) def init_weight(self, pretrained_model=None): """ Initialize the parameters of model parts. Args: pretrained_model ([str], optional): the path of pretrained model. Defaults to None. """ if pretrained_model is not None: if os.path.exists(pretrained_model): utils.load_pretrained_model(self, pretrained_model) else: raise Exception('Pretrained model is not found: {}'.format( pretrained_model)) def ResNet18_vd(**args): model = ResNet_vd(layers=18, **args) return model def ResNet34_vd(**args): model = ResNet_vd(layers=34, **args) return model @manager.BACKBONES.add_component def ResNet50_vd(**args): model = ResNet_vd(layers=50, **args) return model @manager.BACKBONES.add_component def ResNet101_vd(**args): model = ResNet_vd(layers=101, **args) return model def ResNet152_vd(**args): model = ResNet_vd(layers=152, **args) return model def ResNet200_vd(**args): model = ResNet_vd(layers=200, **args) return model