# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys from collections import OrderedDict import subprocess import glob import paddle import cv2 from paddle.distributed import ParallelEnv IS_WINDOWS = sys.platform == 'win32' def _find_cuda_home(): '''Finds the CUDA install path. It refers to the implementation of pytorch . ''' # Guess #1 cuda_home = os.environ.get('CUDA_HOME') or os.environ.get('CUDA_PATH') if cuda_home is None: # Guess #2 try: which = 'where' if IS_WINDOWS else 'which' nvcc = subprocess.check_output([which, 'nvcc']).decode().rstrip('\r\n') cuda_home = os.path.dirname(os.path.dirname(nvcc)) except Exception: # Guess #3 if IS_WINDOWS: cuda_homes = glob.glob( 'C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v*.*') if len(cuda_homes) == 0: cuda_home = '' else: cuda_home = cuda_homes[0] else: cuda_home = '/usr/local/cuda' if not os.path.exists(cuda_home): cuda_home = None return cuda_home def _get_nvcc_info(cuda_home): if cuda_home is not None and os.path.isdir(cuda_home): try: nvcc = os.path.join(cuda_home, 'bin/nvcc') nvcc = subprocess.check_output( "{} -V".format(nvcc), shell=True).decode() nvcc = nvcc.strip().split('\n')[-1] except subprocess.SubprocessError: nvcc = "Not Available" return nvcc def _get_gpu_info(): try: gpu_info = subprocess.check_output(['nvidia-smi', '-L']).decode().strip() gpu_info = gpu_info.split('\n') for i in range(len(gpu_info)): gpu_info[i] = ' '.join(gpu_info[i].split(' ')[:4]) except: gpu_info = ' Can not get GPU information. Please make sure CUDA have been installed successfully.' return gpu_info def get_environ_info(): """collect environment information""" env_info = {} env_info['System Platform'] = sys.platform if env_info['System Platform'] == 'linux': try: lsb_v = subprocess.check_output(['lsb_release', '-v']).decode().strip() lsb_v = lsb_v.replace('\t', ' ') lsb_d = subprocess.check_output(['lsb_release', '-d']).decode().strip() lsb_d = lsb_d.replace('\t', ' ') env_info['LSB'] = [lsb_v, lsb_d] except: pass env_info['Python'] = sys.version.replace('\n', '') # todo is_compiled_with_cuda() has not been moved compiled_with_cuda = paddle.fluid.is_compiled_with_cuda() env_info['Paddle compiled with cuda'] = compiled_with_cuda if compiled_with_cuda: cuda_home = _find_cuda_home() env_info['NVCC'] = _get_nvcc_info(cuda_home) gpu_nums = ParallelEnv().nranks env_info['GPUs used'] = gpu_nums env_info['CUDA_VISIBLE_DEVICES'] = os.environ.get( 'CUDA_VISIBLE_DEVICES') env_info['GPU'] = _get_gpu_info() gcc = subprocess.check_output(['gcc', '--version']).decode() gcc = gcc.strip().split('\n')[0] env_info['GCC'] = gcc env_info['PaddlePaddle'] = paddle.__version__ env_info['OpenCV'] = cv2.__version__ return env_info