batch_size: 2 iters: 40000 train_dataset: type: Cityscapes dataset_root: data/cityscapes transforms: - type: ResizeStepScaling min_scale_factor: 0.5 max_scale_factor: 2.0 scale_step_size: 0.25 - type: RandomPaddingCrop crop_size: [1024, 512] - type: RandomHorizontalFlip - type: Normalize mode: train val_dataset: type: Cityscapes dataset_root: data/cityscapes transforms: - type: Normalize mode: val model: type: OCRNet backbone: type: HRNet_W18 backbone_pretrianed: None num_classes: 19 in_channels: 270 model_pretrained: None optimizer: type: sgd learning_rate: value: 0.01 decay: type: poly power: 0.9 loss: type: CrossEntropy