# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import os import paddle import paddle.fluid as fluid from paddle.fluid.param_attr import ParamAttr from paddle.fluid.layer_helper import LayerHelper from paddle.fluid.dygraph.nn import Conv2D, Pool2D, Linear from paddle.fluid.initializer import Normal from paddle.nn import SyncBatchNorm as BatchNorm from paddleseg.cvlibs import manager from paddleseg import utils from paddleseg.cvlibs import param_init from paddleseg.utils import logger __all__ = [ "fcn_hrnet_w18_small_v1", "fcn_hrnet_w18_small_v2", "fcn_hrnet_w18", "fcn_hrnet_w30", "fcn_hrnet_w32", "fcn_hrnet_w40", "fcn_hrnet_w44", "fcn_hrnet_w48", "fcn_hrnet_w60", "fcn_hrnet_w64" ] @manager.MODELS.add_component class FCN(fluid.dygraph.Layer): """ Fully Convolutional Networks for Semantic Segmentation. https://arxiv.org/abs/1411.4038 Args: num_classes (int): the unique number of target classes. backbone (paddle.nn.Layer): backbone networks. model_pretrained (str): the path of pretrained model. backbone_indices (tuple): one values in the tuple indicte the indices of output of backbone.Default -1. backbone_channels (tuple): the same length with "backbone_indices". It indicates the channels of corresponding index. channels (int): channels after conv layer before the last one. """ def __init__(self, num_classes, backbone, backbone_pretrained=None, model_pretrained=None, backbone_indices=(-1, ), backbone_channels=(270, ), channels=None): super(FCN, self).__init__() self.num_classes = num_classes self.backbone_pretrained = backbone_pretrained self.model_pretrained = model_pretrained self.backbone_indices = backbone_indices if channels is None: channels = backbone_channels[0] self.backbone = backbone self.conv_last_2 = ConvBNLayer( num_channels=backbone_channels[0], num_filters=channels, filter_size=1, stride=1) self.conv_last_1 = Conv2D( num_channels=channels, num_filters=self.num_classes, filter_size=1, stride=1, padding=0) if self.training: self.init_weight() def forward(self, x): input_shape = x.shape[2:] fea_list = self.backbone(x) x = fea_list[self.backbone_indices[0]] x = self.conv_last_2(x) logit = self.conv_last_1(x) logit = fluid.layers.resize_bilinear(logit, input_shape) return [logit] def init_weight(self): params = self.parameters() for param in params: param_name = param.name if 'batch_norm' in param_name: if 'w_0' in param_name: param_init.constant_init(param, value=1.0) elif 'b_0' in param_name: param_init.constant_init(param, value=0.0) if 'conv' in param_name and 'w_0' in param_name: param_init.normal_init(param, scale=0.001) if self.model_pretrained is not None: if os.path.exists(self.model_pretrained): utils.load_pretrained_model(self, self.model_pretrained) else: raise Exception('Pretrained model is not found: {}'.format( self.model_pretrained)) elif self.backbone_pretrained is not None: if os.path.exists(self.backbone_pretrained): utils.load_pretrained_model(self.backbone, self.backbone_pretrained) else: raise Exception('Pretrained model is not found: {}'.format( self.backbone_pretrained)) else: logger.warning('No pretrained model to load, train from scratch') class ConvBNLayer(fluid.dygraph.Layer): def __init__(self, num_channels, num_filters, filter_size, stride=1, groups=1, act="relu"): super(ConvBNLayer, self).__init__() self._conv = Conv2D( num_channels=num_channels, num_filters=num_filters, filter_size=filter_size, stride=stride, padding=(filter_size - 1) // 2, groups=groups, bias_attr=False) self._batch_norm = BatchNorm(num_filters) self.act = act def forward(self, input): y = self._conv(input) y = self._batch_norm(y) if self.act == 'relu': y = fluid.layers.relu(y) return y @manager.MODELS.add_component def fcn_hrnet_w18_small_v1(*args, **kwargs): return FCN(backbone='HRNet_W18_Small_V1', backbone_channels=(240), **kwargs) @manager.MODELS.add_component def fcn_hrnet_w18_small_v2(*args, **kwargs): return FCN(backbone='HRNet_W18_Small_V2', backbone_channels=(270), **kwargs) @manager.MODELS.add_component def fcn_hrnet_w18(*args, **kwargs): return FCN(backbone='HRNet_W18', backbone_channels=(270), **kwargs) @manager.MODELS.add_component def fcn_hrnet_w30(*args, **kwargs): return FCN(backbone='HRNet_W30', backbone_channels=(450), **kwargs) @manager.MODELS.add_component def fcn_hrnet_w32(*args, **kwargs): return FCN(backbone='HRNet_W32', backbone_channels=(480), **kwargs) @manager.MODELS.add_component def fcn_hrnet_w40(*args, **kwargs): return FCN(backbone='HRNet_W40', backbone_channels=(600), **kwargs) @manager.MODELS.add_component def fcn_hrnet_w44(*args, **kwargs): return FCN(backbone='HRNet_W44', backbone_channels=(660), **kwargs) @manager.MODELS.add_component def fcn_hrnet_w48(*args, **kwargs): return FCN(backbone='HRNet_W48', backbone_channels=(720), **kwargs) @manager.MODELS.add_component def fcn_hrnet_w60(*args, **kwargs): return FCN(backbone='HRNet_W60', backbone_channels=(900), **kwargs) @manager.MODELS.add_component def fcn_hrnet_w64(*args, **kwargs): return FCN(backbone='HRNet_W64', backbone_channels=(960), **kwargs)