# coding: utf8 # Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function from __future__ import unicode_literals from utils.collect import SegConfig import numpy as np cfg = SegConfig() ########################## 基本配置 ########################################### # 均值,图像预处理减去的均值 cfg.MEAN = [0.5, 0.5, 0.5] # 标准差,图像预处理除以标准差· cfg.STD = [0.5, 0.5, 0.5] # 批处理大小 cfg.BATCH_SIZE = 1 # 验证时图像裁剪尺寸(宽,高) cfg.EVAL_CROP_SIZE = tuple() # 训练时图像裁剪尺寸(宽,高) cfg.TRAIN_CROP_SIZE = tuple() # 多进程训练总进程数 cfg.NUM_TRAINERS = 1 # 多进程训练进程ID cfg.TRAINER_ID = 0 ########################## 数据载入配置 ####################################### # 数据载入时的并发数, 建议值8 cfg.DATALOADER.NUM_WORKERS = 8 # 数据载入时缓存队列大小, 建议值256 cfg.DATALOADER.BUF_SIZE = 256 ########################## 数据集配置 ######################################### # 数据主目录目录 cfg.DATASET.DATA_DIR = './dataset/cityscapes/' # 训练集列表 cfg.DATASET.TRAIN_FILE_LIST = './dataset/cityscapes/train.list' # 训练集数量 cfg.DATASET.TRAIN_TOTAL_IMAGES = 2975 # 验证集列表 cfg.DATASET.VAL_FILE_LIST = './dataset/cityscapes/val.list' # 验证数据数量 cfg.DATASET.VAL_TOTAL_IMAGES = 500 # 测试数据列表 cfg.DATASET.TEST_FILE_LIST = './dataset/cityscapes/test.list' # 测试数据数量 cfg.DATASET.TEST_TOTAL_IMAGES = 500 # VisualDL 可视化的数据集 cfg.DATASET.VIS_FILE_LIST = None # 类别数(需包括背景类) cfg.DATASET.NUM_CLASSES = 19 # 输入图像类型, 支持三通道'rgb',四通道'rgba',单通道灰度图'gray' cfg.DATASET.IMAGE_TYPE = 'rgb' # 输入图片的通道数 cfg.DATASET.DATA_DIM = 3 # 数据列表分割符, 默认为空格 cfg.DATASET.SEPARATOR = ' ' # 忽略的像素标签值, 默认为255,一般无需改动 cfg.DATASET.IGNORE_INDEX = 255 # 数据增强是图像的padding值 cfg.DATASET.PADDING_VALUE = [127.5, 127.5, 127.5] ########################### 数据增强配置 ###################################### # 图像resize的方式有三种: # unpadding(固定尺寸),stepscaling(按比例resize),rangescaling(长边对齐) cfg.AUG.AUG_METHOD = 'unpadding' # 图像resize的固定尺寸(宽,高),非负 cfg.AUG.FIX_RESIZE_SIZE = (512, 512) # 图像resize方式为stepscaling,resize最小尺度,非负 cfg.AUG.MIN_SCALE_FACTOR = 0.5 # 图像resize方式为stepscaling,resize最大尺度,不小于MIN_SCALE_FACTOR cfg.AUG.MAX_SCALE_FACTOR = 2.0 # 图像resize方式为stepscaling,resize尺度范围间隔,非负 cfg.AUG.SCALE_STEP_SIZE = 0.25 # 图像resize方式为rangescaling,训练时长边resize的范围最小值,非负 cfg.AUG.MIN_RESIZE_VALUE = 400 # 图像resize方式为rangescaling,训练时长边resize的范围最大值, # 不小于MIN_RESIZE_VALUE cfg.AUG.MAX_RESIZE_VALUE = 600 # 图像resize方式为rangescaling, 测试验证可视化模式下长边resize的长度, # 在MIN_RESIZE_VALUE到MAX_RESIZE_VALUE范围内 cfg.AUG.INF_RESIZE_VALUE = 500 # 图像镜像左右翻转 cfg.AUG.MIRROR = True # 图像上下翻转开关,True/False cfg.AUG.FLIP = False # 图像启动上下翻转的概率,0-1 cfg.AUG.FLIP_RATIO = 0.5 # RichCrop数据增广开关,用于提升模型鲁棒性 cfg.AUG.RICH_CROP.ENABLE = False # 图像旋转最大角度,0-90 cfg.AUG.RICH_CROP.MAX_ROTATION = 15 # 裁取图像与原始图像面积比,0-1 cfg.AUG.RICH_CROP.MIN_AREA_RATIO = 0.5 # 裁取图像宽高比范围,非负 cfg.AUG.RICH_CROP.ASPECT_RATIO = 0.33 # 亮度调节范围,0-1 cfg.AUG.RICH_CROP.BRIGHTNESS_JITTER_RATIO = 0.5 # 饱和度调节范围,0-1 cfg.AUG.RICH_CROP.SATURATION_JITTER_RATIO = 0.5 # 对比度调节范围,0-1 cfg.AUG.RICH_CROP.CONTRAST_JITTER_RATIO = 0.5 # 图像模糊开关,True/False cfg.AUG.RICH_CROP.BLUR = False # 图像启动模糊百分比,0-1 cfg.AUG.RICH_CROP.BLUR_RATIO = 0.1 # 图像是否切换到rgb模式 cfg.AUG.TO_RGB = True ########################### 训练配置 ########################################## # 模型保存路径 cfg.TRAIN.MODEL_SAVE_DIR = '' # 预训练模型路径 cfg.TRAIN.PRETRAINED_MODEL_DIR = '' # 是否resume,继续训练 cfg.TRAIN.RESUME_MODEL_DIR = '' # 是否使用多卡间同步BatchNorm均值和方差 cfg.TRAIN.SYNC_BATCH_NORM = False # 模型参数保存的epoch间隔数,可用来继续训练中断的模型 cfg.TRAIN.SNAPSHOT_EPOCH = 10 ########################### 模型优化相关配置 ################################## # 初始学习率 cfg.SOLVER.LR = 0.1 # 学习率下降方法, 支持poly piecewise cosine 三种 cfg.SOLVER.LR_POLICY = "poly" # 优化算法, 支持SGD和Adam两种算法 cfg.SOLVER.OPTIMIZER = "sgd" # 动量参数 cfg.SOLVER.MOMENTUM = 0.9 # 二阶矩估计的指数衰减率 cfg.SOLVER.MOMENTUM2 = 0.999 # 学习率Poly下降指数 cfg.SOLVER.POWER = 0.9 # step下降指数 cfg.SOLVER.GAMMA = 0.1 # step下降间隔 cfg.SOLVER.DECAY_EPOCH = [10, 20] # 学习率权重衰减,0-1 cfg.SOLVER.WEIGHT_DECAY = 0.00004 # 训练开始epoch数,默认为1 cfg.SOLVER.BEGIN_EPOCH = 1 # 训练epoch数,正整数 cfg.SOLVER.NUM_EPOCHS = 30 # loss的选择,支持softmax_loss, bce_loss, dice_loss cfg.SOLVER.LOSS = ["softmax_loss"] # loss的权重,用于多loss组合加权使用,仅对SOLVER.LOSS内包含的loss生效 cfg.SOLVER.LOSS_WEIGHT.SOFTMAX_LOSS = 1 cfg.SOLVER.LOSS_WEIGHT.DICE_LOSS = 1 cfg.SOLVER.LOSS_WEIGHT.BCE_LOSS = 1 cfg.SOLVER.LOSS_WEIGHT.LOVASZ_HINGE_LOSS = 1 cfg.SOLVER.LOSS_WEIGHT.LOVASZ_SOFTMAX_LOSS = 1 # 是否开启warmup学习策略 cfg.SOLVER.LR_WARMUP = False # warmup的迭代次数 cfg.SOLVER.LR_WARMUP_STEPS = 2000 # cross entropy weight, 默认为None,如果设置为'dynamic',会根据每个batch中各个类别的数目, # 动态调整类别权重。 # 也可以设置一个静态权重(list的方式),比如有3类,每个类别权重可以设置为[0.1, 2.0, 0.9] cfg.SOLVER.CROSS_ENTROPY_WEIGHT = None ########################## 测试配置 ########################################### # 测试模型路径 cfg.TEST.TEST_MODEL = '' ########################## 模型通用配置 ####################################### # 模型名称, 已支持deeplabv3p, unet, icnet,pspnet,hrnet cfg.MODEL.MODEL_NAME = '' # BatchNorm类型: bn、gn(group_norm) cfg.MODEL.DEFAULT_NORM_TYPE = 'bn' # 多路损失加权值 cfg.MODEL.MULTI_LOSS_WEIGHT = [1.0] # DEFAULT_NORM_TYPE为gn时group数 cfg.MODEL.DEFAULT_GROUP_NUMBER = 32 # 极小值, 防止分母除0溢出,一般无需改动 cfg.MODEL.DEFAULT_EPSILON = 1e-5 # BatchNorm动量, 一般无需改动 cfg.MODEL.BN_MOMENTUM = 0.99 # 是否使用FP16训练 cfg.MODEL.FP16 = False # 混合精度训练需对LOSS进行scale, 默认为动态scale,静态scale可以设置为512.0 cfg.MODEL.SCALE_LOSS = "DYNAMIC" ########################## DeepLab模型配置 #################################### # DeepLab backbone 配置, 可选项xception_65, xception_41, xception_71, mobilenetv2, resnet_50, resnet_101, resnet_vd_50, resnet_vd_101 cfg.MODEL.DEEPLAB.BACKBONE = "xception_65" # DeepLab output stride cfg.MODEL.DEEPLAB.OUTPUT_STRIDE = 16 # MobileNet v2 backbone scale 设置 cfg.MODEL.DEEPLAB.DEPTH_MULTIPLIER = 1.0 # MobileNet v2 backbone scale 设置 cfg.MODEL.DEEPLAB.ENCODER_WITH_ASPP = True # MobileNet v2 backbone scale 设置 cfg.MODEL.DEEPLAB.ENABLE_DECODER = True # ASPP是否使用可分离卷积 cfg.MODEL.DEEPLAB.ASPP_WITH_SEP_CONV = True # 解码器是否使用可分离卷积 cfg.MODEL.DEEPLAB.DECODER_USE_SEP_CONV = True # resnet_vd分阶段学习率 cfg.MODEL.DEEPLAB.RESNET_LR_MULT_LIST = [1.0, 1.0, 1.0, 1.0, 1.0] ########################## UNET模型配置 ####################################### # 上采样方式, 默认为双线性插值 cfg.MODEL.UNET.UPSAMPLE_MODE = 'bilinear' ########################## ICNET模型配置 ###################################### # RESNET backbone scale 设置 cfg.MODEL.ICNET.DEPTH_MULTIPLIER = 0.5 # RESNET 层数 设置 cfg.MODEL.ICNET.LAYERS = 50 ########################## PSPNET模型配置 ###################################### # RESNET backbone scale 设置 cfg.MODEL.PSPNET.DEPTH_MULTIPLIER = 1 # RESNET backbone 层数 设置 cfg.MODEL.PSPNET.LAYERS = 50 ########################## HRNET模型配置 ###################################### # HRNET STAGE2 设置 cfg.MODEL.HRNET.STAGE2.NUM_MODULES = 1 cfg.MODEL.HRNET.STAGE2.NUM_CHANNELS = [40, 80] # HRNET STAGE3 设置 cfg.MODEL.HRNET.STAGE3.NUM_MODULES = 4 cfg.MODEL.HRNET.STAGE3.NUM_CHANNELS = [40, 80, 160] # HRNET STAGE4 设置 cfg.MODEL.HRNET.STAGE4.NUM_MODULES = 3 cfg.MODEL.HRNET.STAGE4.NUM_CHANNELS = [40, 80, 160, 320] ########################## 预测部署模型配置 ################################### # 预测保存的模型名称 cfg.FREEZE.MODEL_FILENAME = '__model__' # 预测保存的参数名称 cfg.FREEZE.PARAMS_FILENAME = '__params__' # 预测模型参数保存的路径 cfg.FREEZE.SAVE_DIR = 'freeze_model' ########################## paddle-slim ###################################### cfg.SLIM.KNOWLEDGE_DISTILL_IS_TEACHER = False cfg.SLIM.KNOWLEDGE_DISTILL = False cfg.SLIM.KNOWLEDGE_DISTILL_TEACHER_MODEL_DIR = "" cfg.SLIM.NAS_PORT = 23333 cfg.SLIM.NAS_ADDRESS = "" cfg.SLIM.NAS_SEARCH_STEPS = 100 cfg.SLIM.NAS_START_EVAL_EPOCH = 0 cfg.SLIM.NAS_IS_SERVER = True cfg.SLIM.NAS_SPACE_NAME = "" cfg.SLIM.PRUNE_PARAMS = '' cfg.SLIM.PRUNE_RATIOS = [] cfg.SLIM.PREPROCESS = False