#!/usr/bin/env python from __future__ import print_function import argparse import glob import json import os import os.path as osp import sys import numpy as np import PIL.Image import labelme def main(): parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument('label_dir', help='input annotated directory') parser.add_argument('output_dir', help='output dataset directory') args = parser.parse_args() if osp.exists(args.output_dir): print('Output directory already exists:', args.output_dir) sys.exit(1) os.makedirs(args.output_dir) os.makedirs(osp.join(args.output_dir, 'JPEGImages')) os.makedirs(osp.join(args.output_dir, 'SegmentationClassPNG')) print('Creating dataset:', args.output_dir) # get the all class names for the given dataset class_names = ['_background_'] for label_file in glob.glob(osp.join(args.label_dir, '*.json')): with open(label_file) as f: data = json.load(f) if data['outputs']: for output in data['outputs']['object']: name = output['name'] cls_name = name if not cls_name in class_names: class_names.append(cls_name) class_name_to_id = {} for i, class_name in enumerate(class_names): class_id = i # starts with 0 class_name_to_id[class_name] = class_id if class_id == 0: assert class_name == '_background_' class_names = tuple(class_names) print('class_names:', class_names) out_class_names_file = osp.join(args.output_dir, 'class_names.txt') with open(out_class_names_file, 'w') as f: f.writelines('\n'.join(class_names)) print('Saved class_names:', out_class_names_file) for label_file in glob.glob(osp.join(args.label_dir, '*.json')): print('Generating dataset from:', label_file) with open(label_file) as f: base = osp.splitext(osp.basename(label_file))[0] out_img_file = osp.join( args.output_dir, 'JPEGImages', base + '.jpg') out_png_file = osp.join( args.output_dir, 'SegmentationClassPNG', base + '.png') data = json.load(f) data_shapes = [] if data['outputs']: for output in data['outputs']['object']: if 'polygon' in output.keys(): polygon = output['polygon'] name = output['name'] # convert jingling format to labelme format points = [] for i in range(1, int(len(polygon) / 2) + 1): points.append([polygon['x' + str(i)], polygon['y' + str(i)]]) shape = {'label': name, 'points': points, 'shape_type': 'polygon'} data_shapes.append(shape) img_file = osp.join(osp.dirname(label_file), data['path']) img = np.asarray(PIL.Image.open(img_file)) PIL.Image.fromarray(img).save(out_img_file) lbl = labelme.utils.shapes_to_label( img_shape=img.shape, shapes=data_shapes, label_name_to_value=class_name_to_id, ) if osp.splitext(out_png_file)[1] != '.png': out_png_file += '.png' # Assume label ranses [0, 255] for uint8, if lbl.min() >= 0 and lbl.max() <= 255: lbl_pil = PIL.Image.fromarray(lbl.astype(np.uint8), mode='L') lbl_pil.save(out_png_file) else: raise ValueError( '[%s] Cannot save the pixel-wise class label as PNG. ' 'Please consider using the .npy format.' % out_png_file ) if __name__ == '__main__': main()