# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License" # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import import paddle.fluid as fluid import os from os import path as osp import numpy as np from collections import OrderedDict import copy import math import time import tqdm import cv2 import yaml import utils import utils.logging as logging from utils.utils import seconds_to_hms, get_environ_info from utils.metrics import ConfusionMatrix import nets import transforms.transforms as T from .base import BaseModel def dict2str(dict_input): out = '' for k, v in dict_input.items(): try: v = round(float(v), 6) except: pass out = out + '{}={}, '.format(k, v) return out.strip(', ') class HRNet(BaseModel): def __init__(self, num_classes=2, input_channel=3, stage1_num_modules=1, stage1_num_blocks=[4], stage1_num_channels=[64], stage2_num_modules=1, stage2_num_blocks=[4, 4], stage2_num_channels=[18, 36], stage3_num_modules=4, stage3_num_blocks=[4, 4, 4], stage3_num_channels=[18, 36, 72], stage4_num_modules=3, stage4_num_blocks=[4, 4, 4, 4], stage4_num_channels=[18, 36, 72, 144], use_bce_loss=False, use_dice_loss=False, class_weight=None, ignore_index=255, sync_bn=True): super().__init__( num_classes=num_classes, use_bce_loss=use_bce_loss, use_dice_loss=use_dice_loss, class_weight=class_weight, ignore_index=ignore_index, sync_bn=sync_bn) self.init_params = locals() self.input_channel = input_channel self.stage1_num_modules = stage1_num_modules self.stage1_num_blocks = stage1_num_blocks self.stage1_num_channels = stage1_num_channels self.stage2_num_modules = stage2_num_modules self.stage2_num_blocks = stage2_num_blocks self.stage2_num_channels = stage2_num_channels self.stage3_num_modules = stage3_num_modules self.stage3_num_blocks = stage3_num_blocks self.stage3_num_channels = stage3_num_channels self.stage4_num_modules = stage4_num_modules self.stage4_num_blocks = stage4_num_blocks self.stage4_num_channels = stage4_num_channels def build_net(self, mode='train'): """应根据不同的情况进行构建""" model = nets.HRNet( self.num_classes, self.input_channel, mode=mode, stage1_num_modules=self.stage1_num_modules, stage1_num_blocks=self.stage1_num_blocks, stage1_num_channels=self.stage1_num_channels, stage2_num_modules=self.stage2_num_modules, stage2_num_blocks=self.stage2_num_blocks, stage2_num_channels=self.stage2_num_channels, stage3_num_modules=self.stage3_num_modules, stage3_num_blocks=self.stage3_num_blocks, stage3_num_channels=self.stage3_num_channels, stage4_num_modules=self.stage4_num_modules, stage4_num_blocks=self.stage4_num_blocks, stage4_num_channels=self.stage4_num_channels, use_bce_loss=self.use_bce_loss, use_dice_loss=self.use_dice_loss, class_weight=self.class_weight, ignore_index=self.ignore_index) inputs = model.generate_inputs() model_out = model.build_net(inputs) outputs = OrderedDict() if mode == 'train': self.optimizer.minimize(model_out) outputs['loss'] = model_out else: outputs['pred'] = model_out[0] outputs['logit'] = model_out[1] return inputs, outputs def train(self, num_epochs, train_reader, train_batch_size=2, eval_reader=None, eval_best_metric='kappa', save_interval_epochs=1, log_interval_steps=2, save_dir='output', pretrain_weights=None, resume_weights=None, optimizer=None, learning_rate=0.01, lr_decay_power=0.9, regularization_coeff=5e-4, use_vdl=False): super().train( num_epochs=num_epochs, train_reader=train_reader, train_batch_size=train_batch_size, eval_reader=eval_reader, eval_best_metric=eval_best_metric, save_interval_epochs=save_interval_epochs, log_interval_steps=log_interval_steps, save_dir=save_dir, pretrain_weights=pretrain_weights, resume_weights=resume_weights, optimizer=optimizer, learning_rate=learning_rate, lr_decay_power=lr_decay_power, regularization_coeff=regularization_coeff, use_vdl=use_vdl)