EVAL_CROP_SIZE: (2049, 1025) # (width, height), for unpadding rangescaling and stepscaling TRAIN_CROP_SIZE: (769, 769) # (width, height), for unpadding rangescaling and stepscaling AUG: AUG_METHOD: "stepscaling" # choice unpadding rangescaling and stepscaling FIX_RESIZE_SIZE: (640, 640) # (width, height), for unpadding INF_RESIZE_VALUE: 500 # for rangescaling MAX_RESIZE_VALUE: 600 # for rangescaling MIN_RESIZE_VALUE: 400 # for rangescaling MAX_SCALE_FACTOR: 2.0 # for stepscaling MIN_SCALE_FACTOR: 0.5 # for stepscaling SCALE_STEP_SIZE: 0.25 # for stepscaling MIRROR: True BATCH_SIZE: 4 DATASET: DATA_DIR: "./dataset/cityscapes/" IMAGE_TYPE: "rgb" # choice rgb or rgba NUM_CLASSES: 19 TEST_FILE_LIST: "dataset/cityscapes/val.list" TRAIN_FILE_LIST: "dataset/cityscapes/train.list" VAL_FILE_LIST: "dataset/cityscapes/val.list" VIS_FILE_LIST: "dataset/cityscapes/vis.list" SEPARATOR: " " IGNORE_INDEX: 255 FREEZE: MODEL_FILENAME: "__model__" PARAMS_FILENAME: "__params__" MODEL: DEFAULT_NORM_TYPE: "gn" MODEL_NAME: "deeplabv3p" DEEPLAB: ASPP_WITH_SEP_CONV: True DECODER_USE_SEP_CONV: True TEST: TEST_MODEL: "snapshots/cityscape_v5/final/" TRAIN: MODEL_SAVE_DIR: "snapshots/cityscape_v5/" PRETRAINED_MODEL_DIR: "pretrain/deeplabv3plus_gn_init" SNAPSHOT_EPOCH: 10 SOLVER: LR: 0.001 LR_POLICY: "poly" OPTIMIZER: "sgd" NUM_EPOCHS: 700