# -*- coding: utf-8 -*- import os import cv2 import numpy as np from utils.util import get_arguments from utils.palette import get_palette from PIL import Image as PILImage import importlib args = get_arguments() config = importlib.import_module(args.example+'.config') cfg = getattr(config, 'cfg') # paddle垃圾回收策略FLAG,ACE2P模型较大,当显存不够时建议开启 os.environ['FLAGS_eager_delete_tensor_gb']='0.0' import paddle.fluid as fluid # 预测数据集类 class TestDataSet(): def __init__(self): self.data_dir = cfg.data_dir self.data_list_file = cfg.data_list_file self.data_list = self.get_data_list() self.data_num = len(self.data_list) def get_data_list(self): # 获取预测图像路径列表 data_list = [] data_file_handler = open(self.data_list_file, 'r') for line in data_file_handler: img_name = line.strip() name_prefix = img_name.split('.')[0] if len(img_name.split('.')) == 1: img_name = img_name + '.jpg' img_path = os.path.join(self.data_dir, img_name) data_list.append(img_path) return data_list def preprocess(self, img): # 图像预处理 if cfg.example == 'ACE2P': reader = importlib.import_module(args.example+'.reader') ACE2P_preprocess = getattr(reader, 'preprocess') img = ACE2P_preprocess(img) else: img = cv2.resize(img, cfg.input_size).astype(np.float32) img -= np.array(cfg.MEAN) img /= np.array(cfg.STD) img = img.transpose((2, 0, 1)) img = np.expand_dims(img, axis=0) return img def get_data(self, index): # 获取图像信息 img_path = self.data_list[index] img = cv2.imread(img_path, cv2.IMREAD_COLOR) if img is None: return img, img,img_path, None img_name = img_path.split(os.sep)[-1] name_prefix = img_name.replace('.'+img_name.split('.')[-1],'') img_shape = img.shape[:2] img_process = self.preprocess(img) return img, img_process, name_prefix, img_shape def infer(): if not os.path.exists(cfg.vis_dir): os.makedirs(cfg.vis_dir) palette = get_palette(cfg.class_num) # 人像分割结果显示阈值 thresh = 120 place = fluid.CUDAPlace(0) if cfg.use_gpu else fluid.CPUPlace() exe = fluid.Executor(place) # 加载预测模型 test_prog, feed_name, fetch_list = fluid.io.load_inference_model( dirname=cfg.model_path, executor=exe, params_filename='__params__') #加载预测数据集 test_dataset = TestDataSet() data_num = test_dataset.data_num for idx in range(1, data_num + 1): # 数据获取 ori_img, image, im_name, im_shape = test_dataset.get_data(idx) if image is None: print(im_name, 'is None') continue # 预测 if cfg.example == 'ACE2P': # ACE2P模型使用多尺度预测 reader = importlib.import_module(args.example+'.reader') multi_scale_test = getattr(reader, 'multi_scale_test') parsing, logits = multi_scale_test(exe, test_prog, feed_name, fetch_list, image, im_shape) else: # HumanSeg,RoadLine模型单尺度预测 result = exe.run(program=test_prog, feed={feed_name[0]: image}, fetch_list=fetch_list) parsing = np.argmax(result[0][0], axis=0) parsing = cv2.resize(parsing.astype(np.uint8), im_shape[::-1]) # 预测结果保存 result_path = os.path.join(cfg.vis_dir, im_name + '.png') if cfg.example == 'HumanSeg': logits = result[0][0][1]*255 logits = cv2.resize(logits, im_shape[::-1]) ret, logits = cv2.threshold(logits, thresh, 0, cv2.THRESH_TOZERO) logits = 255 *(logits - thresh)/(255 - thresh) # 将分割结果添加到alpha通道 rgba = np.concatenate((ori_img, np.expand_dims(logits, axis=2)), axis=2) cv2.imwrite(result_path, rgba) else: output_im = PILImage.fromarray(np.asarray(parsing, dtype=np.uint8)) output_im.putpalette(palette) output_im.save(result_path) if idx % 100 == 0: print('%d processd' % (idx)) print('%d processd done' % (idx)) return 0 if __name__ == "__main__": infer()