# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import contextlib import os import numpy as np import math import cv2 import tempfile import paddle.fluid as fluid from urllib.parse import urlparse, unquote import filelock import paddleseg.env as segenv from paddleseg.utils import logger from paddleseg.utils.download import download_file_and_uncompress @contextlib.contextmanager def generate_tempdir(directory: str = None, **kwargs): '''Generate a temporary directory''' directory = segenv.TMP_HOME if not directory else directory with tempfile.TemporaryDirectory(dir=directory, **kwargs) as _dir: yield _dir def seconds_to_hms(seconds): h = math.floor(seconds / 3600) m = math.floor((seconds - h * 3600) / 60) s = int(seconds - h * 3600 - m * 60) hms_str = "{}:{}:{}".format(h, m, s) return hms_str def load_entire_model(model, pretrained): if pretrained is not None: if os.path.exists(pretrained): load_pretrained_model(model, pretrained) else: raise Exception( 'Pretrained model is not found: {}'.format(pretrained)) else: logger.warning('Not all pretrained params of {} to load, '\ 'training from scratch or a pretrained backbone'.format(model.__class__.__name__)) def load_pretrained_model(model, pretrained_model): if pretrained_model is not None: logger.info('Load pretrained model from {}'.format(pretrained_model)) # download pretrained model from url if urlparse(pretrained_model).netloc: pretrained_model = unquote(pretrained_model) savename = pretrained_model.split('/')[-1].split('.')[0] with generate_tempdir() as _dir: with filelock.FileLock(os.path.join(segenv.TMP_HOME, savename)): pretrained_model = download_file_and_uncompress( pretrained_model, savepath=_dir, extrapath=segenv.PRETRAINED_MODEL_HOME, extraname=savename) if os.path.exists(pretrained_model): ckpt_path = os.path.join(pretrained_model, 'model') try: para_state_dict, _ = fluid.load_dygraph(ckpt_path) except: para_state_dict = fluid.load_program_state(pretrained_model) model_state_dict = model.state_dict() keys = model_state_dict.keys() num_params_loaded = 0 for k in keys: if k not in para_state_dict: logger.warning("{} is not in pretrained model".format(k)) elif list(para_state_dict[k].shape) != list( model_state_dict[k].shape): logger.warning( "[SKIP] Shape of pretrained params {} doesn't match.(Pretrained: {}, Actual: {})" .format(k, para_state_dict[k].shape, model_state_dict[k].shape)) else: model_state_dict[k] = para_state_dict[k] num_params_loaded += 1 model.set_dict(model_state_dict) logger.info("There are {}/{} variables are loaded into {}.".format( num_params_loaded, len(model_state_dict), model.__class__.__name__)) else: raise ValueError( 'The pretrained model directory is not Found: {}'.format( pretrained_model)) else: logger.info( 'No pretrained model to load, {} will be train from scratch.'. format(model.__class__.__name__)) def resume(model, optimizer, resume_model): if resume_model is not None: logger.info('Resume model from {}'.format(resume_model)) if os.path.exists(resume_model): resume_model = os.path.normpath(resume_model) ckpt_path = os.path.join(resume_model, 'model') para_state_dict, opti_state_dict = fluid.load_dygraph(ckpt_path) model.set_dict(para_state_dict) optimizer.set_dict(opti_state_dict) epoch = resume_model.split('_')[-1] if epoch.isdigit(): epoch = int(epoch) return epoch else: raise ValueError( 'The resume model directory is not Found: {}'.format( resume_model)) else: logger.info('No model need to resume') def visualize(image, result, save_dir=None, weight=0.6): """ Convert segment result to color image, and save added image. Args: image: the path of origin image result: the predict result of image save_dir: the directory for saving visual image weight: the image weight of visual image, and the result weight is (1 - weight) """ color_map = get_color_map_list(256) color_map = np.array(color_map).astype("uint8") # Use OpenCV LUT for color mapping c1 = cv2.LUT(result, color_map[:, 0]) c2 = cv2.LUT(result, color_map[:, 1]) c3 = cv2.LUT(result, color_map[:, 2]) pseudo_img = np.dstack((c1, c2, c3)) im = cv2.imread(image) vis_result = cv2.addWeighted(im, weight, pseudo_img, 1 - weight, 0) if save_dir is not None: if not os.path.exists(save_dir): os.makedirs(save_dir) image_name = os.path.split(image)[-1] out_path = os.path.join(save_dir, image_name) cv2.imwrite(out_path, vis_result) else: return vis_result def get_color_map_list(num_classes): """ Returns the color map for visualizing the segmentation mask, which can support arbitrary number of classes. Args: num_classes: Number of classes Returns: The color map """ num_classes += 1 color_map = num_classes * [0, 0, 0] for i in range(0, num_classes): j = 0 lab = i while lab: color_map[i * 3] |= (((lab >> 0) & 1) << (7 - j)) color_map[i * 3 + 1] |= (((lab >> 1) & 1) << (7 - j)) color_map[i * 3 + 2] |= (((lab >> 2) & 1) << (7 - j)) j += 1 lab >>= 3 color_map = [color_map[i:i + 3] for i in range(0, len(color_map), 3)] color_map = color_map[1:] return color_map