EVAL_CROP_SIZE: (2048, 1024) # (width, height), for unpadding rangescaling and stepscaling TRAIN_CROP_SIZE: (1024, 512) # (width, height), for unpadding rangescaling and stepscaling AUG: # AUG_METHOD: "unpadding" # choice unpadding rangescaling and stepscaling AUG_METHOD: "stepscaling" # choice unpadding rangescaling and stepscaling FIX_RESIZE_SIZE: (1024, 512) # (width, height), for unpadding INF_RESIZE_VALUE: 500 # for rangescaling MAX_RESIZE_VALUE: 600 # for rangescaling MIN_RESIZE_VALUE: 400 # for rangescaling MAX_SCALE_FACTOR: 2.0 # for stepscaling MIN_SCALE_FACTOR: 0.5 # for stepscaling SCALE_STEP_SIZE: 0.25 # for stepscaling MIRROR: True BATCH_SIZE: 4 #BATCH_SIZE: 4 DATASET: DATA_DIR: "./dataset/cityscapes/" IMAGE_TYPE: "rgb" # choice rgb or rgba NUM_CLASSES: 19 TEST_FILE_LIST: "./dataset/cityscapes/val.list" TRAIN_FILE_LIST: "./dataset/cityscapes/train.list" VAL_FILE_LIST: "./dataset/cityscapes/val.list" VIS_FILE_LIST: "./dataset/cityscapes/val.list" IGNORE_INDEX: 255 SEPARATOR: " " FREEZE: MODEL_FILENAME: "model" PARAMS_FILENAME: "params" MODEL: MODEL_NAME: "ocrnet" DEFAULT_NORM_TYPE: "bn" HRNET: STAGE2: NUM_CHANNELS: [18, 36] STAGE3: NUM_CHANNELS: [18, 36, 72] STAGE4: NUM_CHANNELS: [18, 36, 72, 144] OCR: OCR_MID_CHANNELS: 512 OCR_KEY_CHANNELS: 256 MULTI_LOSS_WEIGHT: [1.0, 1.0] TRAIN: PRETRAINED_MODEL_DIR: u"./pretrained_model/ocrnet_w18_cityscape/best_model" MODEL_SAVE_DIR: "output/ocrnet_w18_bn_cityscapes" SNAPSHOT_EPOCH: 1 SYNC_BATCH_NORM: True TEST: TEST_MODEL: "output/ocrnet_w18_bn_cityscapes/first" SOLVER: LR: 0.01 LR_POLICY: "poly" OPTIMIZER: "sgd" NUM_EPOCHS: 500