# -*- coding: utf-8 -*- from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import paddle import paddle.fluid as fluid from paddle.fluid.param_attr import ParamAttr from models.libs.model_libs import scope, name_scope from models.libs.model_libs import avg_pool , conv, bn from models.backbone.resnet import ResNet as resnet_backbone from utils.config import cfg def get_logit_interp(input, num_classes, out_shape, name="logit"): # 根据类别数决定最后一层卷积输出, 并插值回原始尺寸 param_attr = fluid.ParamAttr( name=name + 'weights', regularizer=fluid.regularizer.L2DecayRegularizer( regularization_coeff=0.0), initializer=fluid.initializer.TruncatedNormal(loc=0.0, scale=0.01)) with scope(name): logit = conv(input, num_classes, filter_size=1, param_attr=param_attr, bias_attr=True, name=name+'_conv') logit_interp = fluid.layers.resize_bilinear( logit, out_shape=out_shape, name='logit_interp') return logit_interp def psp_module(input, out_features): # Pyramid Scene Parsing 金字塔池化模块 # 输入:backbone输出的特征 # 输出:对输入进行不同尺度pooling, 卷积操作后插值回原始尺寸,并concat # 最后进行一个卷积及BN操作 cat_layers = [] sizes = (1,2,3,6) for size in sizes: psp_name = "psp_conv" + str(size) with scope(psp_name): pool = fluid.layers.adaptive_pool2d(input, pool_size=[size, size], pool_type='avg', name=psp_name+'_adapool') data = conv(pool, out_features, filter_size=1, bias_attr=True, name= psp_name + '_conv') data_bn = bn(data, act='relu') interp = fluid.layers.resize_bilinear(data_bn, out_shape=input.shape[2:], name=psp_name+'_interp') cat_layers.append(interp) cat_layers = [input] + cat_layers[::-1] cat = fluid.layers.concat(cat_layers, axis=1, name='psp_cat') psp_end_name = "psp_conv_end" with scope(psp_end_name): data = conv(cat, out_features, filter_size=3, padding=1, bias_attr=True, name=psp_end_name) out = bn(data, act='relu') return out def resnet(input): # PSPNET backbone: resnet, 默认resnet50 # end_points: resnet终止层数 # dilation_dict: resnet block数及对应的膨胀卷积尺度 scale = cfg.MODEL.ICNET.DEPTH_MULTIPLIER scale = cfg.MODEL.PSPNET.DEPTH_MULTIPLIER layers = cfg.MODEL.PSPNET.LAYERS end_points = layers - 1 dilation_dict = {2:2, 3:4} model = resnet_backbone(layers, scale, stem='pspnet') data, _ = model.net(input, end_points=end_points, dilation_dict=dilation_dict) return data def pspnet(input, num_classes): # Backbone: ResNet res = resnet(input) # PSP模块 psp = psp_module(res, 512) dropout = fluid.layers.dropout(psp, dropout_prob=0.1, name="dropout") # 根据类别数决定最后一层卷积输出, 并插值回原始尺寸 logit = get_logit_interp(dropout, num_classes, input.shape[2:]) return logit