# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License" # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from test_utils import download_file_and_uncompress, train, eval, vis, export_model import os import argparse LOCAL_PATH = os.path.dirname(os.path.abspath(__file__)) DATASET_PATH = os.path.join(LOCAL_PATH, "..", "dataset") MODEL_PATH = os.path.join(LOCAL_PATH, "models") def download_pet_dataset(savepath, extrapath): url = "https://paddleseg.bj.bcebos.com/dataset/mini_pet.zip" download_file_and_uncompress( url=url, savepath=savepath, extrapath=extrapath) def download_unet_coco_model(savepath, extrapath): url = "https://bj.bcebos.com/v1/paddleseg/models/unet_coco_init.tgz" download_file_and_uncompress( url=url, savepath=savepath, extrapath=extrapath) if __name__ == "__main__": download_pet_dataset(LOCAL_PATH, DATASET_PATH) download_unet_coco_model(LOCAL_PATH, MODEL_PATH) model_name = "unet_pet" test_model = os.path.join(LOCAL_PATH, "models", "unet_coco_init") cfg = os.path.join(LOCAL_PATH, "..", "configs", "{}.yaml".format(model_name)) freeze_save_dir = os.path.join(LOCAL_PATH, "inference_model", model_name) vis_dir = os.path.join(LOCAL_PATH, "visual", model_name) saved_model = os.path.join(LOCAL_PATH, "saved_model", model_name) parser = argparse.ArgumentParser(description="PaddleSeg loacl test") parser.add_argument( "--devices", dest="devices", help="GPU id of running. if more than one, use spacing to separate.", nargs="+", default=0, type=int) args = parser.parse_args() devices = [str(x) for x in args.devices] train( flags=["--cfg", cfg, "--use_gpu", "--log_steps", "10"], options=[ "SOLVER.NUM_EPOCHS", "1", "TRAIN.PRETRAINED_MODEL_DIR", test_model, "TRAIN.MODEL_SAVE_DIR", saved_model, "DATASET.TRAIN_FILE_LIST", os.path.join(DATASET_PATH, "mini_pet", "file_list", "train_list.txt"), "DATASET.VAL_FILE_LIST", os.path.join(DATASET_PATH, "mini_pet", "file_list", "val_list.txt"), "DATASET.TEST_FILE_LIST", os.path.join(DATASET_PATH, "mini_pet", "file_list", "test_list.txt"), "DATASET.DATA_DIR", os.path.join(DATASET_PATH, "mini_pet"), "BATCH_SIZE", "1" ], devices=devices) eval( flags=["--cfg", cfg, "--use_gpu"], options=[ "TEST.TEST_MODEL", os.path.join(saved_model, "final"), "DATASET.VAL_FILE_LIST", os.path.join(DATASET_PATH, "mini_pet", "file_list", "val_list.txt"), "DATASET.DATA_DIR", os.path.join(DATASET_PATH, "mini_pet") ], devices=devices) vis(flags=["--cfg", cfg, "--use_gpu", "--local_test", "--vis_dir", vis_dir], options=[ "DATASET.TEST_FILE_LIST", os.path.join(DATASET_PATH, "mini_pet", "file_list", "test_list.txt"), "DATASET.DATA_DIR", os.path.join(DATASET_PATH, "mini_pet"), "TEST.TEST_MODEL", os.path.join(saved_model, "final") ], devices=devices) export_model( flags=["--cfg", cfg], options=[ "TEST.TEST_MODEL", os.path.join(saved_model, "final"), "FREEZE.SAVE_DIR", freeze_save_dir ], devices=devices)