#!/usr/bin/env python from __future__ import print_function import argparse import glob import json import os import os.path as osp import numpy as np import PIL.Image import labelme from gray2pseudo_color import get_color_map_list def parse_args(): parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('input_dir', help='input annotated directory') return parser.parse_args() def main(args): output_dir = osp.join(args.input_dir, 'annotations') if not osp.exists(output_dir): os.makedirs(output_dir) print('Creating annotations directory:', output_dir) # get the all class names for the given dataset class_names = ['_background_'] for label_file in glob.glob(osp.join(args.input_dir, '*.json')): with open(label_file) as f: data = json.load(f) if data['outputs']: for output in data['outputs']['object']: name = output['name'] cls_name = name if not cls_name in class_names: class_names.append(cls_name) class_name_to_id = {} for i, class_name in enumerate(class_names): class_id = i # starts with 0 class_name_to_id[class_name] = class_id if class_id == 0: assert class_name == '_background_' class_names = tuple(class_names) print('class_names:', class_names) out_class_names_file = osp.join(args.input_dir, 'class_names.txt') with open(out_class_names_file, 'w') as f: f.writelines('\n'.join(class_names)) print('Saved class_names:', out_class_names_file) color_map = get_color_map_list(256) for label_file in glob.glob(osp.join(args.input_dir, '*.json')): print('Generating dataset from:', label_file) with open(label_file) as f: base = osp.splitext(osp.basename(label_file))[0] out_png_file = osp.join(output_dir, base + '.png') data = json.load(f) data_shapes = [] if data['outputs']: for output in data['outputs']['object']: if 'polygon' in output.keys(): polygon = output['polygon'] name = output['name'] # convert jingling format to labelme format points = [] for i in range(1, int(len(polygon) / 2) + 1): points.append( [polygon['x' + str(i)], polygon['y' + str(i)]]) shape = { 'label': name, 'points': points, 'shape_type': 'polygon' } data_shapes.append(shape) if 'size' not in data: continue data_size = data['size'] img_shape = (data_size['height'], data_size['width'], data_size['depth']) lbl, _ = labelme.utils.shapes_to_label( img_shape=img_shape, shapes=data_shapes, label_name_to_value=class_name_to_id, ) if osp.splitext(out_png_file)[1] != '.png': out_png_file += '.png' # Assume label ranges [0, 255] for uint8, if lbl.min() >= 0 and lbl.max() <= 255: lbl_pil = PIL.Image.fromarray(lbl.astype(np.uint8), mode='P') lbl_pil.putpalette(color_map) lbl_pil.save(out_png_file) else: raise ValueError( '[%s] Cannot save the pixel-wise class label as PNG. ' 'Please consider using the .npy format.' % out_png_file) if __name__ == '__main__': args = parse_args() main(args)