# -*- encoding: utf-8 -*- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle from paddle import nn import paddle.nn.functional as F from paddle.nn import Conv2d from paddle.nn import SyncBatchNorm as BatchNorm class ConvBNReLU(nn.Layer): def __init__(self, in_channels, out_channels, kernel_size, **kwargs): super(ConvBNReLU, self).__init__() self._conv = Conv2d(in_channels, out_channels, kernel_size, **kwargs) self._batch_norm = BatchNorm(out_channels) def forward(self, x): x = self._conv(x) x = self._batch_norm(x) x = F.relu(x) return x class ConvBN(nn.Layer): def __init__(self, in_channels, out_channels, kernel_size, **kwargs): super(ConvBN, self).__init__() self._conv = Conv2d(in_channels, out_channels, kernel_size, **kwargs) self._batch_norm = BatchNorm(out_channels) def forward(self, x): x = self._conv(x) x = self._batch_norm(x) return x class ConvReluPool(nn.Layer): def __init__(self, in_channels, out_channels): super(ConvReluPool, self).__init__() self.conv = Conv2d( in_channels, out_channels, kernel_size=3, stride=1, padding=1, dilation=1) def forward(self, x): x = self.conv(x) x = F.relu(x) x = F.pool2d(x, pool_size=2, pool_type="max", pool_stride=2) return x class DepthwiseConvBNReLU(nn.Layer): def __init__(self, in_channels, out_channels, kernel_size, **kwargs): super(DepthwiseConvBNReLU, self).__init__() self.depthwise_conv = ConvBN( in_channels, out_channels=in_channels, kernel_size=kernel_size, groups=in_channels, **kwargs) self.piontwise_conv = ConvBNReLU( in_channels, out_channels, kernel_size=1, groups=1) def forward(self, x): x = self.depthwise_conv(x) x = self.piontwise_conv(x) return x class DepthwiseConvBN(nn.Layer): def __init__(self, in_channels, out_channels, kernel_size, **kwargs): super(DepthwiseConvBN, self).__init__() self.depthwise_conv = ConvBN( in_channels, out_channels=in_channels, kernel_size=kernel_size, groups=in_channels, **kwargs) self.piontwise_conv = ConvBN( in_channels, out_channels, kernel_size=1, groups=1) def forward(self, x): x = self.depthwise_conv(x) x = self.piontwise_conv(x) return x class AuxLayer(nn.Layer): """ The auxilary layer implementation for auxilary loss Args: in_channels (int): the number of input channels. inter_channels (int): intermediate channels. out_channels (int): the number of output channels, which is usually num_classes. dropout_prob (float): the droput rate. Default to 0.1. """ def __init__(self, in_channels, inter_channels, out_channels, dropout_prob=0.1): super(AuxLayer, self).__init__() self.conv_bn_relu = ConvBNReLU( in_channels=in_channels, out_channels=inter_channels, kernel_size=3, padding=1) self.conv = nn.Conv2d( in_channels=inter_channels, out_channels=out_channels, kernel_size=1) self.dropout_prob = dropout_prob def forward(self, x): x = self.conv_bn_relu(x) x = F.dropout(x, p=self.dropout_prob) x = self.conv(x) return x