# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import paddle.nn.functional as F from paddle import nn from paddleseg.cvlibs import manager from paddleseg.models.common import layer_libs, pyramid_pool from paddleseg.utils import utils @manager.MODELS.add_component class PSPNet(nn.Layer): """ The PSPNet implementation based on PaddlePaddle. The original article refers to Zhao, Hengshuang, et al. "Pyramid scene parsing network." Proceedings of the IEEE conference on computer vision and pattern recognition. 2017. (https://openaccess.thecvf.com/content_cvpr_2017/papers/Zhao_Pyramid_Scene_Parsing_CVPR_2017_paper.pdf) Args: num_classes (int): the unique number of target classes. backbone (Paddle.nn.Layer): backbone network, currently support Resnet50/101. model_pretrained (str): the path of pretrained model. Default to None. backbone_indices (tuple): two values in the tuple indicate the indices of output of backbone. the first index will be taken as a deep-supervision feature in auxiliary layer; the second one will be taken as input of Pyramid Pooling Module (PPModule). Usually backbone consists of four downsampling stage, and return an output of each stage, so we set default (2, 3), which means taking feature map of the third stage (res4b22) in backbone, and feature map of the fourth stage (res5c) as input of PPModule. backbone_channels (tuple): the same length with "backbone_indices". It indicates the channels of corresponding index. pp_out_channels (int): output channels after Pyramid Pooling Module. Default to 1024. bin_sizes (tuple): the out size of pooled feature maps. Default to (1,2,3,6). enable_auxiliary_loss (bool): a bool values indicates whether adding auxiliary loss. Default to True. """ def __init__(self, num_classes, backbone, model_pretrained=None, backbone_indices=(2, 3), backbone_channels=(1024, 2048), pp_out_channels=1024, bin_sizes=(1, 2, 3, 6), enable_auxiliary_loss=True): super(PSPNet, self).__init__() self.backbone = backbone self.backbone_indices = backbone_indices self.psp_module = pyramid_pool.PPModule( in_channels=backbone_channels[1], out_channels=pp_out_channels, bin_sizes=bin_sizes) self.conv = nn.Conv2d( in_channels=pp_out_channels, out_channels=num_classes, kernel_size=1) if enable_auxiliary_loss: self.auxlayer = layer_libs.AuxLayer( in_channels=backbone_channels[0], inter_channels=backbone_channels[0] // 4, out_channels=num_classes) self.enable_auxiliary_loss = enable_auxiliary_loss self.init_weight(model_pretrained) def forward(self, input, label=None): logit_list = [] _, feat_list = self.backbone(input) x = feat_list[self.backbone_indices[1]] x = self.psp_module(x) x = F.dropout(x, p=0.1) # dropout_prob logit = self.conv(x) logit = F.resize_bilinear(logit, input.shape[2:]) logit_list.append(logit) if self.enable_auxiliary_loss: auxiliary_feat = feat_list[self.backbone_indices[0]] auxiliary_logit = self.auxlayer(auxiliary_feat) auxiliary_logit = F.resize_bilinear(auxiliary_logit, input.shape[2:]) logit_list.append(auxiliary_logit) return logit_list def init_weight(self, pretrained_model=None): """ Initialize the parameters of model parts. Args: pretrained_model ([str], optional): the path of pretrained model. Defaults to None. """ if pretrained_model is not None: if os.path.exists(pretrained_model): utils.load_pretrained_model(self, pretrained_model) else: raise Exception('Pretrained model is not found: {}'.format( pretrained_model))