# coding: utf8 # copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import sys import time import pprint import cv2 import argparse import numpy as np import paddle.fluid as fluid from utils.config import cfg from models.model_builder import build_model from models.model_builder import ModelPhase def parse_args(): parser = argparse.ArgumentParser( description='PaddleSeg Inference Model Exporter') parser.add_argument( '--cfg', dest='cfg_file', help='Config file for training (and optionally testing)', default=None, type=str) parser.add_argument( 'opts', help='See utils/config.py for all options', default=None, nargs=argparse.REMAINDER) if len(sys.argv) == 1: parser.print_help() sys.exit(1) return parser.parse_args() def export_inference_config(): deploy_cfg = '''DEPLOY: USE_GPU : 1 USE_PR : 1 MODEL_PATH : "%s" MODEL_FILENAME : "%s" PARAMS_FILENAME : "%s" EVAL_CROP_SIZE : %s MEAN : %s STD : %s IMAGE_TYPE : "%s" NUM_CLASSES : %d CHANNELS : %d PRE_PROCESSOR : "SegPreProcessor" PREDICTOR_MODE : "ANALYSIS" BATCH_SIZE : 1 ''' % (cfg.FREEZE.SAVE_DIR, cfg.FREEZE.MODEL_FILENAME, cfg.FREEZE.PARAMS_FILENAME, cfg.EVAL_CROP_SIZE, cfg.MEAN, cfg.STD, cfg.DATASET.IMAGE_TYPE, cfg.DATASET.NUM_CLASSES, len(cfg.STD)) if not os.path.exists(cfg.FREEZE.SAVE_DIR): os.mkdir(cfg.FREEZE.SAVE_DIR) yaml_path = os.path.join(cfg.FREEZE.SAVE_DIR, 'deploy.yaml') with open(yaml_path, "w") as fp: fp.write(deploy_cfg) return yaml_path def export_inference_model(args): """ Export PaddlePaddle inference model for prediction depolyment and serving. """ print("Exporting inference model...") startup_prog = fluid.Program() infer_prog = fluid.Program() image, logit_out = build_model( infer_prog, startup_prog, phase=ModelPhase.PREDICT) # Use CPU for exporting inference model instead of GPU place = fluid.CPUPlace() exe = fluid.Executor(place) exe.run(startup_prog) infer_prog = infer_prog.clone(for_test=True) if os.path.exists(cfg.TEST.TEST_MODEL): fluid.io.load_params(exe, cfg.TEST.TEST_MODEL, main_program=infer_prog) else: print("TEST.TEST_MODEL diretory is empty!") exit(-1) fluid.io.save_inference_model( cfg.FREEZE.SAVE_DIR, feeded_var_names=[image.name], target_vars=[logit_out], executor=exe, main_program=infer_prog, model_filename=cfg.FREEZE.MODEL_FILENAME, params_filename=cfg.FREEZE.PARAMS_FILENAME) print("Inference model exported!") print("Exporting inference model config...") deploy_cfg_path = export_inference_config() print("Inference model saved : [%s]" % (deploy_cfg_path)) def main(): args = parse_args() if args.cfg_file is not None: cfg.update_from_file(args.cfg_file) if args.opts: cfg.update_from_list(args.opts) cfg.check_and_infer() print(pprint.pformat(cfg)) export_inference_model(args) if __name__ == '__main__': main()