# coding: utf8 # copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import numpy as np import paddle.fluid as fluid from paddle.fluid.param_attr import ParamAttr __all__ = [ "ResNet", "ResNet18", "ResNet34", "ResNet50", "ResNet101", "ResNet152" ] train_parameters = { "input_size": [3, 224, 224], "input_mean": [0.485, 0.456, 0.406], "input_std": [0.229, 0.224, 0.225], "learning_strategy": { "name": "piecewise_decay", "batch_size": 256, "epochs": [30, 60, 90], "steps": [0.1, 0.01, 0.001, 0.0001] } } class ResNet(): def __init__(self, layers=50, scale=1.0, stem=None): self.params = train_parameters self.layers = layers self.scale = scale self.stem = stem def net(self, input, class_dim=1000, end_points=None, decode_points=None, resize_points=None, dilation_dict=None): layers = self.layers supported_layers = [18, 34, 50, 101, 152] assert layers in supported_layers, \ "supported layers are {} but input layer is {}".format(supported_layers, layers) decode_ends = dict() def check_points(count, points): if points is None: return False else: if isinstance(points, list): return (True if count in points else False) else: return (True if count == points else False) def get_dilated_rate(dilation_dict, idx): if dilation_dict is None or idx not in dilation_dict: return 1 else: return dilation_dict[idx] if layers == 18: depth = [2, 2, 2, 2] elif layers == 34 or layers == 50: depth = [3, 4, 6, 3] elif layers == 101: depth = [3, 4, 23, 3] elif layers == 152: depth = [3, 8, 36, 3] num_filters = [64, 128, 256, 512] if self.stem == 'icnet': conv = self.conv_bn_layer( input=input, num_filters=int(64 * self.scale), filter_size=3, stride=2, act='relu', name="conv1_1") conv = self.conv_bn_layer( input=conv, num_filters=int(64 * self.scale), filter_size=3, stride=1, act='relu', name="conv1_2") conv = self.conv_bn_layer( input=conv, num_filters=int(128 * self.scale), filter_size=3, stride=1, act='relu', name="conv1_3") else: conv = self.conv_bn_layer( input=input, num_filters=int(64 * self.scale), filter_size=7, stride=2, act='relu', name="conv1") conv = fluid.layers.pool2d( input=conv, pool_size=3, pool_stride=2, pool_padding=1, pool_type='max') layer_count = 1 if check_points(layer_count, decode_points): decode_ends[layer_count] = conv if check_points(layer_count, end_points): return conv, decode_ends if layers >= 50: for block in range(len(depth)): for i in range(depth[block]): if layers in [101, 152] and block == 2: if i == 0: conv_name = "res" + str(block + 2) + "a" else: conv_name = "res" + str(block + 2) + "b" + str(i) else: conv_name = "conv" + str(block + 2) + '_' + str(1 + i) dilation_rate = get_dilated_rate(dilation_dict, block) conv = self.bottleneck_block( input=conv, num_filters=int(num_filters[block] * self.scale), stride=2 if i == 0 and block != 0 and dilation_rate == 1 else 1, name=conv_name, dilation=dilation_rate) layer_count += 3 if check_points(layer_count, decode_points): decode_ends[layer_count] = conv if check_points(layer_count, end_points): return conv, decode_ends if check_points(layer_count, resize_points): conv = self.interp( conv, np.ceil( np.array(conv.shape[2:]).astype('int32') / 2)) pool = fluid.layers.pool2d( input=conv, pool_size=7, pool_type='avg', global_pooling=True) stdv = 1.0 / math.sqrt(pool.shape[1] * 1.0) out = fluid.layers.fc( input=pool, size=class_dim, param_attr=fluid.param_attr.ParamAttr( initializer=fluid.initializer.Uniform(-stdv, stdv))) else: for block in range(len(depth)): for i in range(depth[block]): conv_name = "res" + str(block + 2) + chr(97 + i) conv = self.basic_block( input=conv, num_filters=num_filters[block], stride=2 if i == 0 and block != 0 else 1, is_first=block == i == 0, name=conv_name) layer_count += 2 if check_points(layer_count, decode_points): decode_ends[layer_count] = conv if check_points(layer_count, end_points): return conv, decode_ends pool = fluid.layers.pool2d( input=conv, pool_size=7, pool_type='avg', global_pooling=True) stdv = 1.0 / math.sqrt(pool.shape[1] * 1.0) out = fluid.layers.fc( input=pool, size=class_dim, param_attr=fluid.param_attr.ParamAttr( initializer=fluid.initializer.Uniform(-stdv, stdv))) return out def zero_padding(self, input, padding): return fluid.layers.pad( input, [0, 0, 0, 0, padding, padding, padding, padding]) def interp(self, input, out_shape): out_shape = list(out_shape.astype("int32")) return fluid.layers.resize_bilinear(input, out_shape=out_shape) def conv_bn_layer(self, input, num_filters, filter_size, stride=1, dilation=1, groups=1, act=None, name=None): conv = fluid.layers.conv2d( input=input, num_filters=num_filters, filter_size=filter_size, stride=stride, padding=(filter_size - 1) // 2 if dilation == 1 else 0, dilation=dilation, groups=groups, act=None, param_attr=ParamAttr(name=name + "/weights"), bias_attr=False, name=name + '.conv2d.output.1') bn_name = name + '/BatchNorm/' return fluid.layers.batch_norm( input=conv, act=act, name=bn_name + '.output.1', param_attr=ParamAttr(name=bn_name + 'gamma'), bias_attr=ParamAttr(bn_name + 'beta'), moving_mean_name=bn_name + 'moving_mean', moving_variance_name=bn_name + 'moving_variance', ) def shortcut(self, input, ch_out, stride, is_first, name): ch_in = input.shape[1] if ch_in != ch_out or stride != 1 or is_first == True: return self.conv_bn_layer(input, ch_out, 1, stride, name=name) else: return input def bottleneck_block(self, input, num_filters, stride, name, dilation=1): conv0 = self.conv_bn_layer( input=input, num_filters=num_filters, filter_size=1, dilation=1, stride=stride, act='relu', name=name + "_branch2a") if dilation > 1: conv0 = self.zero_padding(conv0, dilation) conv1 = self.conv_bn_layer( input=conv0, num_filters=num_filters, filter_size=3, dilation=dilation, act='relu', name=name + "_branch2b") conv2 = self.conv_bn_layer( input=conv1, num_filters=num_filters * 4, dilation=1, filter_size=1, act=None, name=name + "_branch2c") short = self.shortcut( input, num_filters * 4, stride, is_first=False, name=name + "_branch1") return fluid.layers.elementwise_add( x=short, y=conv2, act='relu', name=name + ".add.output.5") def basic_block(self, input, num_filters, stride, is_first, name): conv0 = self.conv_bn_layer( input=input, num_filters=num_filters, filter_size=3, act='relu', stride=stride, name=name + "_branch2a") conv1 = self.conv_bn_layer( input=conv0, num_filters=num_filters, filter_size=3, act=None, name=name + "_branch2b") short = self.shortcut( input, num_filters, stride, is_first, name=name + "_branch1") return fluid.layers.elementwise_add(x=short, y=conv1, act='relu') def ResNet18(): model = ResNet(layers=18) return model def ResNet34(): model = ResNet(layers=34) return model def ResNet50(): model = ResNet(layers=50) return model def ResNet101(): model = ResNet(layers=101) return model def ResNet152(): model = ResNet(layers=152) return model