# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import time import numpy as np import paddle from paddle.distributed.parallel import ParallelEnv from visualdl import LogWriter from paddleseg.utils.progbar import Progbar import paddleseg.utils.logger as logger class CallbackList(object): """Container abstracting a list of callbacks. # Arguments callbacks: List of `Callback` instances. """ def __init__(self, callbacks=None): callbacks = callbacks or [] self.callbacks = [c for c in callbacks] def append(self, callback): self.callbacks.append(callback) def set_params(self, params): for callback in self.callbacks: callback.set_params(params) def set_model(self, model): for callback in self.callbacks: callback.set_model(model) def set_optimizer(self, optimizer): for callback in self.callbacks: callback.set_optimizer(optimizer) def on_iter_begin(self, iter, logs=None): """Called right before processing a batch. """ logs = logs or {} for callback in self.callbacks: callback.on_iter_begin(iter, logs) self._t_enter_iter = time.time() def on_iter_end(self, iter, logs=None): """Called at the end of a batch. """ logs = logs or {} for callback in self.callbacks: callback.on_iter_end(iter, logs) self._t_exit_iter = time.time() def on_train_begin(self, logs=None): """Called at the beginning of training. """ logs = logs or {} for callback in self.callbacks: callback.on_train_begin(logs) def on_train_end(self, logs=None): """Called at the end of training. """ logs = logs or {} for callback in self.callbacks: callback.on_train_end(logs) def __iter__(self): return iter(self.callbacks) class Callback(object): """Abstract base class used to build new callbacks. """ def __init__(self): self.validation_data = None def set_params(self, params): self.params = params def set_model(self, model): self.model = model def set_optimizer(self, optimizer): self.optimizer = optimizer def on_iter_begin(self, iter, logs=None): pass def on_iter_end(self, iter, logs=None): pass def on_train_begin(self, logs=None): pass def on_train_end(self, logs=None): pass class BaseLogger(Callback): def __init__(self, period=10): super(BaseLogger, self).__init__() self.period = period def _reset(self): self.totals = {} def on_train_begin(self, logs=None): self.totals = {} def on_iter_end(self, iter, logs=None): logs = logs or {} #(iter - 1) // iters_per_epoch + 1 for k, v in logs.items(): if k in self.totals.keys(): self.totals[k] += v else: self.totals[k] = v if iter % self.period == 0 and ParallelEnv().local_rank == 0: for k in self.totals: logs[k] = self.totals[k] / self.period self._reset() class TrainLogger(Callback): def __init__(self, log_freq=10): self.log_freq = log_freq def _calculate_eta(self, remaining_iters, speed): if remaining_iters < 0: remaining_iters = 0 remaining_time = int(remaining_iters * speed) result = "{:0>2}:{:0>2}:{:0>2}" arr = [] for i in range(2, -1, -1): arr.append(int(remaining_time / 60**i)) remaining_time %= 60**i return result.format(*arr) def on_iter_end(self, iter, logs=None): if iter % self.log_freq == 0 and ParallelEnv().local_rank == 0: total_iters = self.params["total_iters"] iters_per_epoch = self.params["iters_per_epoch"] remaining_iters = total_iters - iter eta = self._calculate_eta(remaining_iters, logs["batch_cost"]) current_epoch = (iter - 1) // self.params["iters_per_epoch"] + 1 loss = logs["loss"] lr = self.optimizer.get_lr() batch_cost = logs["batch_cost"] reader_cost = logs["reader_cost"] logger.info( "[TRAIN] epoch={}, iter={}/{}, loss={:.4f}, lr={:.6f}, batch_cost={:.4f}, reader_cost={:.4f} | ETA {}" .format(current_epoch, iter, total_iters, loss, lr, batch_cost, reader_cost, eta)) class ProgbarLogger(Callback): def __init__(self): super(ProgbarLogger, self).__init__() def on_train_begin(self, logs=None): self.verbose = self.params["verbose"] self.total_iters = self.params["total_iters"] self.target = self.params["total_iters"] self.progbar = Progbar(target=self.target, verbose=self.verbose) self.seen = 0 self.log_values = [] def on_iter_begin(self, iter, logs=None): #self.seen = 0 if self.seen < self.target: self.log_values = [] def on_iter_end(self, iter, logs=None): logs = logs or {} self.seen += 1 for k in self.params['metrics']: if k in logs: self.log_values.append((k, logs[k])) #if self.verbose and self.seen < self.target and ParallelEnv.local_rank == 0: #print(self.log_values) if self.seen < self.target: self.progbar.update(self.seen, self.log_values) class ModelCheckpoint(Callback): def __init__(self, save_dir, monitor="miou", save_best_only=False, save_params_only=True, mode="max", period=1): super(ModelCheckpoint, self).__init__() self.monitor = monitor self.save_dir = save_dir self.save_best_only = save_best_only self.save_params_only = save_params_only self.period = period self.iters_since_last_save = 0 if mode == "min": self.monitor_op = np.less self.best = np.Inf elif mode == "max": self.monitor_op = np.greater self.best = -np.Inf else: raise RuntimeError("mode is not either \"min\" or \"max\"!") def on_train_begin(self, logs=None): self.verbose = self.params["verbose"] save_dir = self.save_dir if not os.path.isdir(save_dir): if os.path.exists(save_dir): os.remove(save_dir) os.makedirs(save_dir) def on_iter_end(self, iter, logs=None): logs = logs or {} self.iters_since_last_save += 1 current_save_dir = os.path.join(self.save_dir, "iter_{}".format(iter)) current_save_dir = os.path.abspath(current_save_dir) #if self.iters_since_last_save % self.period and ParallelEnv().local_rank == 0: #self.iters_since_last_save = 0 if iter % self.period == 0 and ParallelEnv().local_rank == 0: if self.verbose > 0: print("iter {iter_num}: saving model to {path}".format( iter_num=iter, path=current_save_dir)) filepath = os.path.join(current_save_dir, 'model') paddle.save(self.model.state_dict(), filepath) if not self.save_params_only: paddle.save(self.optimizer.state_dict(), filepath) class VisualDL(Callback): def __init__(self, log_dir="./log", freq=1): super(VisualDL, self).__init__() self.log_dir = log_dir self.freq = freq def on_train_begin(self, logs=None): self.writer = LogWriter(self.log_dir) def on_iter_end(self, iter, logs=None): logs = logs or {} if iter % self.freq == 0 and ParallelEnv().local_rank == 0: for k, v in logs.items(): self.writer.add_scalar("Train/{}".format(k), v, iter) self.writer.flush() def on_train_end(self, logs=None): self.writer.close()