EVAL_CROP_SIZE: (2049, 1025) # (width, height), for unpadding rangescaling and stepscaling TRAIN_CROP_SIZE: (769, 769) # (width, height), for unpadding rangescaling and stepscaling AUG: AUG_METHOD: "stepscaling" # choice unpadding rangescaling and stepscaling FIX_RESIZE_SIZE: (2048, 1024) # (width, height), for unpadding INF_RESIZE_VALUE: 500 # for rangescaling MAX_RESIZE_VALUE: 600 # for rangescaling MIN_RESIZE_VALUE: 400 # for rangescaling MAX_SCALE_FACTOR: 2.0 # for stepscaling MIN_SCALE_FACTOR: 0.5 # for stepscaling SCALE_STEP_SIZE: 0.25 # for stepscaling MIRROR: True BATCH_SIZE: 4 DATASET: DATA_DIR: "./dataset/cityscapes/" IMAGE_TYPE: "rgb" # choice rgb or rgba NUM_CLASSES: 19 TEST_FILE_LIST: "dataset/cityscapes/val.list" TRAIN_FILE_LIST: "dataset/cityscapes/train.list" VAL_FILE_LIST: "dataset/cityscapes/val.list" IGNORE_INDEX: 255 SEPARATOR: " " FREEZE: MODEL_FILENAME: "model" PARAMS_FILENAME: "params" MODEL: DEFAULT_NORM_TYPE: "bn" MODEL_NAME: "deeplabv3p" DEEPLAB: BACKBONE: "mobilenetv2" ASPP_WITH_SEP_CONV: True DECODER_USE_SEP_CONV: True ENCODER_WITH_ASPP: False ENABLE_DECODER: False TRAIN: PRETRAINED_MODEL_DIR: u"pretrained_model/deeplabv3p_mobilenetv2-1-0_bn_coco" MODEL_SAVE_DIR: "saved_model/deeplabv3p_mobilenetv2_cityscapes" SNAPSHOT_EPOCH: 10 SYNC_BATCH_NORM: True TEST: TEST_MODEL: "saved_model/deeplabv3p_mobilenetv2_cityscapes/final" SOLVER: LR: 0.01 LR_POLICY: "poly" OPTIMIZER: "sgd" NUM_EPOCHS: 100