# coding: utf8 # copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys import numpy as np import cv2 import paddle.fluid as fluid def load_model(model_dir, use_gpu=False): """ Load model files and init paddle predictor """ prog_file = os.path.join(model_dir, '__model__') params_file = os.path.join(model_dir, '__params__') config = fluid.core.AnalysisConfig(prog_file, params_file) if use_gpu: config.enable_use_gpu(100, 0) config.switch_ir_optim(True) else: config.disable_gpu() config.disable_glog_info() config.switch_specify_input_names(True) config.enable_memory_optim() return fluid.core.create_paddle_predictor(config) class HumanSeg: """ Human Segmentation Class """ def __init__(self, model_dir, mean, scale, eval_size, use_gpu=False): self.mean = np.array(mean).reshape((3, 1, 1)) self.scale = np.array(scale).reshape((3, 1, 1)) self.eval_size = eval_size self.predictor = load_model(model_dir, use_gpu) def preprocess(self, image): """ preprocess image: hwc_rgb to chw_bgr """ img_mat = cv2.resize( image, self.eval_size, fx=0, fy=0, interpolation=cv2.INTER_CUBIC) # HWC -> CHW img_mat = img_mat.swapaxes(1, 2) img_mat = img_mat.swapaxes(0, 1) # Convert to float img_mat = img_mat[:, :, :].astype('float32') # img_mat = (img_mat - mean) * scale img_mat = img_mat - self.mean img_mat = img_mat * self.scale img_mat = img_mat[np.newaxis, :, :, :] return img_mat def postprocess(self, image, output_data): """ postprocess result: merge background with segmentation result """ mask = output_data[0, 1, :, :] mask = cv2.resize(mask, (image.shape[1], image.shape[0])) scoremap = np.repeat(mask[:, :, np.newaxis], 3, axis=2) bg_im = np.ones_like(scoremap) * 255 merge_im = (scoremap * image + (1 - scoremap) * bg_im).astype(np.uint8) return merge_im def run_predict(self, image): """ run predict: return segmentation image mat """ ori_im = image.copy() im_mat = self.preprocess(ori_im) im_tensor = fluid.core.PaddleTensor(im_mat.copy().astype('float32')) output_data = self.predictor.run([im_tensor])[0] output_data = output_data.as_ndarray() return self.postprocess(image, output_data) def predict_image(seg, image_path): """ Do Predicting on a image """ img_mat = cv2.imread(image_path) img_mat = seg.run_predict(img_mat) cv2.imwrite('result.jpeg', img_mat) def predict_video(seg, video_path): """ Do Predicting on a video """ cap = cv2.VideoCapture(video_path) if not cap.isOpened(): print("Error opening video stream or file") return width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) fps = cap.get(cv2.CAP_PROP_FPS) # Result Video Writer out = cv2.VideoWriter('result.avi', cv2.VideoWriter_fourcc('M', 'J', 'P', 'G'), fps, (width, height)) # Start capturing from video while cap.isOpened(): ret, frame = cap.read() if ret: img_mat = seg.run_predict(frame) out.write(img_mat) else: break cap.release() out.release() def predict_camera(seg): """ Do Predicting on a camera video stream """ cap = cv2.VideoCapture(0) if not cap.isOpened(): print("Error opening video stream or file") return # Start capturing from video while cap.isOpened(): ret, frame = cap.read() if ret: img_mat = seg.run_predict(frame) cv2.imshow('Frame', img_mat) if cv2.waitKey(1) & 0xFF == ord('q'): break else: break cap.release() def main(argv): """ Entrypoint of the script """ if len(argv) < 3: print('Usage: python infer.py /path/to/model/ /path/to/video') return model_dir = sys.argv[1] input_path = sys.argv[2] use_gpu = int(sys.argv[3]) if len(sys.argv) >= 4 else 0 # Init model mean = [104.008, 116.669, 122.675] scale = [1.0, 1.0, 1.0] eval_size = (192, 192) seg = HumanSeg(model_dir, mean, scale, eval_size, use_gpu) # Run Predicting on a video and result will be saved as result.avi # predict_camera(seg) predict_video(seg, input_path) if __name__ == "__main__": main(sys.argv)