# coding: utf8 # copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os # GPU memory garbage collection optimization flags os.environ['FLAGS_eager_delete_tensor_gb'] = "0.0" import sys import time import argparse import functools import pprint import cv2 import numpy as np import paddle import paddle.fluid as fluid from utils.config import cfg from utils.timer import Timer, calculate_eta from models.model_builder import build_model from models.model_builder import ModelPhase from reader import SegDataset from metrics import ConfusionMatrix def parse_args(): parser = argparse.ArgumentParser(description='PaddleSeg model evalution') parser.add_argument( '--cfg', dest='cfg_file', help='Config file for training (and optionally testing)', default=None, type=str) parser.add_argument( '--use_gpu', dest='use_gpu', help='Use gpu or cpu', action='store_true', default=False) parser.add_argument( '--use_mpio', dest='use_mpio', help='Use multiprocess IO or not', action='store_true', default=False) parser.add_argument( 'opts', help='See utils/config.py for all options', default=None, nargs=argparse.REMAINDER) if len(sys.argv) == 1: parser.print_help() sys.exit(1) return parser.parse_args() def evaluate(cfg, ckpt_dir=None, use_gpu=False, use_mpio=False, **kwargs): np.set_printoptions(precision=5, suppress=True) startup_prog = fluid.Program() test_prog = fluid.Program() dataset = SegDataset( file_list=cfg.DATASET.VAL_FILE_LIST, mode=ModelPhase.EVAL, data_dir=cfg.DATASET.DATA_DIR) def data_generator(): #TODO: check is batch reader compatitable with Windows if use_mpio: data_gen = dataset.multiprocess_generator( num_processes=cfg.DATALOADER.NUM_WORKERS, max_queue_size=cfg.DATALOADER.BUF_SIZE) else: data_gen = dataset.generator() for b in data_gen: yield b[0], b[1], b[2] py_reader, avg_loss, pred, grts, masks = build_model( test_prog, startup_prog, phase=ModelPhase.EVAL) py_reader.decorate_sample_generator( data_generator, drop_last=False, batch_size=cfg.BATCH_SIZE) # Get device environment places = fluid.cuda_places() if use_gpu else fluid.cpu_places() place = places[0] dev_count = len(places) print("#Device count: {}".format(dev_count)) exe = fluid.Executor(place) exe.run(startup_prog) test_prog = test_prog.clone(for_test=True) ckpt_dir = cfg.TEST.TEST_MODEL if not ckpt_dir else ckpt_dir if ckpt_dir is not None: print('load test model:', ckpt_dir) fluid.io.load_params(exe, ckpt_dir, main_program=test_prog) # Use streaming confusion matrix to calculate mean_iou np.set_printoptions( precision=4, suppress=True, linewidth=160, floatmode="fixed") conf_mat = ConfusionMatrix(cfg.DATASET.NUM_CLASSES, streaming=True) fetch_list = [avg_loss.name, pred.name, grts.name, masks.name] num_images = 0 step = 0 all_step = cfg.DATASET.TEST_TOTAL_IMAGES // cfg.BATCH_SIZE + 1 timer = Timer() timer.start() py_reader.start() while True: try: step += 1 loss, pred, grts, masks = exe.run( test_prog, fetch_list=fetch_list, return_numpy=True) loss = np.mean(np.array(loss)) num_images += pred.shape[0] conf_mat.calculate(pred, grts, masks) _, iou = conf_mat.mean_iou() _, acc = conf_mat.accuracy() speed = 1.0 / timer.elapsed_time() print( "[EVAL]step={} loss={:.5f} acc={:.4f} IoU={:.4f} step/sec={:.2f} | ETA {}" .format(step, loss, acc, iou, speed, calculate_eta(all_step - step, speed))) timer.restart() sys.stdout.flush() except fluid.core.EOFException: break category_iou, avg_iou = conf_mat.mean_iou() category_acc, avg_acc = conf_mat.accuracy() print("[EVAL]#image={} acc={:.4f} IoU={:.4f}".format( num_images, avg_acc, avg_iou)) print("[EVAL]Category IoU:", category_iou) print("[EVAL]Category Acc:", category_acc) print("[EVAL]Kappa:{:.4f}".format(conf_mat.kappa())) return category_iou, avg_iou, category_acc, avg_acc def main(): args = parse_args() if args.cfg_file is not None: cfg.update_from_file(args.cfg_file) if args.opts: cfg.update_from_list(args.opts) cfg.check_and_infer() print(pprint.pformat(cfg)) evaluate(cfg, **args.__dict__) if __name__ == '__main__': main()