# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import paddle import paddle.nn.functional as F from paddle import nn from paddleseg.cvlibs import manager, param_init from paddleseg.models.common.layer_libs import ConvBNReLU, ConvBN, AuxLayer from paddleseg.utils import utils @manager.MODELS.add_component class ANN(nn.Layer): """ The ANN implementation based on PaddlePaddle. The original article refers to Zhen, Zhu, et al. "Asymmetric Non-local Neural Networks for Semantic Segmentation." (https://arxiv.org/pdf/1908.07678.pdf) Args: num_classes (int): the unique number of target classes. backbone (Paddle.nn.Layer): backbone network, currently support Resnet50/101. model_pretrained (str): the path of pretrained model. Default to None. backbone_indices (tuple): two values in the tuple indicate the indices of output of backbone. key_value_channels (int): the key and value channels of self-attention map in both AFNB and APNB modules. Default to 256. inter_channels (int): both input and output channels of APNB modules. psp_size (tuple): the out size of pooled feature maps. Default to (1, 3, 6, 8). enable_auxiliary_loss (bool): a bool values indicates whether adding auxiliary loss. Default to True. pretrained (str): the path of pretrained model. Default to None. """ def __init__(self, num_classes, backbone, backbone_indices=(2, 3), key_value_channels=256, inter_channels=512, psp_size=(1, 3, 6, 8), enable_auxiliary_loss=True, pretrained=None,): super(ANN, self).__init__() self.backbone = backbone backbone_channels = [ backbone.feat_channels[i] for i in backbone_indices ] self.head = ANNHead( num_classes, backbone_indices, backbone_channels, key_value_channels, inter_channels, psp_size, enable_auxiliary_loss) utils.load_entire_model(self, pretrained) def forward(self, input): feat_list = self.backbone(input) logit_list = self.head(feat_list) return [ F.resize_bilinear(logit, input.shape[2:]) for logit in logit_list ] class ANNHead(nn.Layer): """ The ANNHead implementation. It mainly consists of AFNB and APNB modules. Args: num_classes (int): the unique number of target classes. model_pretrained (str): the path of pretrained model. Default to None. backbone_indices (tuple): two values in the tuple indicate the indices of output of backbone. the first index will be taken as low-level features; the second one will be taken as high-level features in AFNB module. Usually backbone consists of four downsampling stage, and return an output of each stage, so we set default (2, 3), which means taking feature map of the third stage and the fourth stage in backbone. backbone_channels (tuple): the same length with "backbone_indices". It indicates the channels of corresponding index. key_value_channels (int): the key and value channels of self-attention map in both AFNB and APNB modules. Default to 256. inter_channels (int): both input and output channels of APNB modules. psp_size (tuple): the out size of pooled feature maps. Default to (1, 3, 6, 8). enable_auxiliary_loss (bool): a bool values indicates whether adding auxiliary loss. Default to True. """ def __init__(self, num_classes, backbone_indices=(2, 3), backbone_channels=(1024, 2048), key_value_channels=256, inter_channels=512, psp_size=(1, 3, 6, 8), enable_auxiliary_loss=True): super(ANNHead, self).__init__() low_in_channels = backbone_channels[0] high_in_channels = backbone_channels[1] self.fusion = AFNB( low_in_channels=low_in_channels, high_in_channels=high_in_channels, out_channels=high_in_channels, key_channels=key_value_channels, value_channels=key_value_channels, dropout_prob=0.05, sizes=([1]), psp_size=psp_size) self.context = nn.Sequential( ConvBNReLU( in_channels=high_in_channels, out_channels=inter_channels, kernel_size=3, padding=1), APNB( in_channels=inter_channels, out_channels=inter_channels, key_channels=key_value_channels, value_channels=key_value_channels, dropout_prob=0.05, sizes=([1]), psp_size=psp_size)) self.cls = nn.Conv2d( in_channels=inter_channels, out_channels=num_classes, kernel_size=1) self.auxlayer = AuxLayer( in_channels=low_in_channels, inter_channels=low_in_channels // 2, out_channels=num_classes, dropout_prob=0.05) self.backbone_indices = backbone_indices self.enable_auxiliary_loss = enable_auxiliary_loss self.init_weight() def forward(self, feat_list): logit_list = [] low_level_x = feat_list[self.backbone_indices[0]] high_level_x = feat_list[self.backbone_indices[1]] x = self.fusion(low_level_x, high_level_x) x = self.context(x) logit = self.cls(x) logit_list.append(logit) if self.enable_auxiliary_loss: auxiliary_logit = self.auxlayer(low_level_x) logit_list.append(auxiliary_logit) return logit_list def init_weight(self): """ Initialize the parameters of model parts. """ pass class AFNB(nn.Layer): """ Asymmetric Fusion Non-local Block Args: low_in_channels (int): low-level-feature channels. high_in_channels (int): high-level-feature channels. out_channels (int): out channels of AFNB module. key_channels (int): the key channels in self-attention block. value_channels (int): the value channels in self-attention block. dropout_prob (float): the dropout rate of output. sizes (tuple): the number of AFNB modules. Default to ([1]). psp_size (tuple): the out size of pooled feature maps. Default to (1, 3, 6, 8). """ def __init__(self, low_in_channels, high_in_channels, out_channels, key_channels, value_channels, dropout_prob, sizes=([1]), psp_size=(1, 3, 6, 8)): super(AFNB, self).__init__() self.psp_size = psp_size self.stages = nn.LayerList([ SelfAttentionBlock_AFNB(low_in_channels, high_in_channels, key_channels, value_channels, out_channels, size) for size in sizes ]) self.conv_bn = ConvBN( in_channels=out_channels + high_in_channels, out_channels=out_channels, kernel_size=1) self.dropout_prob = dropout_prob def forward(self, low_feats, high_feats): priors = [stage(low_feats, high_feats) for stage in self.stages] context = priors[0] for i in range(1, len(priors)): context += priors[i] output = self.conv_bn(paddle.concat([context, high_feats], axis=1)) output = F.dropout(output, p=self.dropout_prob) # dropout_prob return output class APNB(nn.Layer): """ Asymmetric Pyramid Non-local Block Args: in_channels (int): the input channels of APNB module. out_channels (int): out channels of APNB module. key_channels (int): the key channels in self-attention block. value_channels (int): the value channels in self-attention block. dropout_prob (float): the dropout rate of output. sizes (tuple): the number of AFNB modules. Default to ([1]). psp_size (tuple): the out size of pooled feature maps. Default to (1, 3, 6, 8). """ def __init__(self, in_channels, out_channels, key_channels, value_channels, dropout_prob, sizes=([1]), psp_size=(1, 3, 6, 8)): super(APNB, self).__init__() self.psp_size = psp_size self.stages = nn.LayerList([ SelfAttentionBlock_APNB(in_channels, out_channels, key_channels, value_channels, size) for size in sizes ]) self.conv_bn = ConvBNReLU( in_channels=in_channels * 2, out_channels=out_channels, kernel_size=1) self.dropout_prob = dropout_prob def forward(self, feats): priors = [stage(feats) for stage in self.stages] context = priors[0] for i in range(1, len(priors)): context += priors[i] output = self.conv_bn(paddle.concat([context, feats], axis=1)) output = F.dropout(output, p=self.dropout_prob) # dropout_prob return output def _pp_module(x, psp_size): n, c, h, w = x.shape priors = [] for size in psp_size: feat = F.adaptive_pool2d(x, pool_size=size, pool_type="avg") feat = paddle.reshape(feat, shape=(n, c, -1)) priors.append(feat) center = paddle.concat(priors, axis=-1) return center class SelfAttentionBlock_AFNB(nn.Layer): """ Self-Attention Block for AFNB module. Args: low_in_channels (int): low-level-feature channels. high_in_channels (int): high-level-feature channels. key_channels (int): the key channels in self-attention block. value_channels (int): the value channels in self-attention block. out_channels (int): out channels of AFNB module. scale (int): pooling size. Default to 1. psp_size (tuple): the out size of pooled feature maps. Default to (1, 3, 6, 8). """ def __init__(self, low_in_channels, high_in_channels, key_channels, value_channels, out_channels=None, scale=1, psp_size=(1, 3, 6, 8)): super(SelfAttentionBlock_AFNB, self).__init__() self.scale = scale self.in_channels = low_in_channels self.out_channels = out_channels self.key_channels = key_channels self.value_channels = value_channels if out_channels == None: self.out_channels = high_in_channels self.pool = nn.Pool2D(pool_size=(scale, scale), pool_type="max") self.f_key = ConvBNReLU( in_channels=low_in_channels, out_channels=key_channels, kernel_size=1) self.f_query = ConvBNReLU( in_channels=high_in_channels, out_channels=key_channels, kernel_size=1) self.f_value = nn.Conv2d( in_channels=low_in_channels, out_channels=value_channels, kernel_size=1) self.W = nn.Conv2d( in_channels=value_channels, out_channels=out_channels, kernel_size=1) self.psp_size = psp_size def forward(self, low_feats, high_feats): batch_size, _, h, w = high_feats.shape value = self.f_value(low_feats) value = _pp_module(value, self.psp_size) value = paddle.transpose(value, (0, 2, 1)) query = self.f_query(high_feats) query = paddle.reshape(query, shape=(batch_size, self.key_channels, -1)) query = paddle.transpose(query, perm=(0, 2, 1)) key = self.f_key(low_feats) key = _pp_module(key, self.psp_size) sim_map = paddle.matmul(query, key) sim_map = (self.key_channels**-.5) * sim_map sim_map = F.softmax(sim_map, axis=-1) context = paddle.matmul(sim_map, value) context = paddle.transpose(context, perm=(0, 2, 1)) context = paddle.reshape( context, shape=[batch_size, self.value_channels, *high_feats.shape[2:]]) context = self.W(context) return context class SelfAttentionBlock_APNB(nn.Layer): """ Self-Attention Block for APNB module. Args: in_channels (int): the input channels of APNB module. out_channels (int): out channels of APNB module. key_channels (int): the key channels in self-attention block. value_channels (int): the value channels in self-attention block. scale (int): pooling size. Default to 1. psp_size (tuple): the out size of pooled feature maps. Default to (1, 3, 6, 8). """ def __init__(self, in_channels, out_channels, key_channels, value_channels, scale=1, psp_size=(1, 3, 6, 8)): super(SelfAttentionBlock_APNB, self).__init__() self.scale = scale self.in_channels = in_channels self.out_channels = out_channels self.key_channels = key_channels self.value_channels = value_channels self.pool = nn.Pool2D(pool_size=(scale, scale), pool_type="max") self.f_key = ConvBNReLU( in_channels=self.in_channels, out_channels=self.key_channels, kernel_size=1) self.f_query = self.f_key self.f_value = nn.Conv2d( in_channels=self.in_channels, out_channels=self.value_channels, kernel_size=1) self.W = nn.Conv2d( in_channels=self.value_channels, out_channels=self.out_channels, kernel_size=1) self.psp_size = psp_size def forward(self, x): batch_size, _, h, w = x.shape if self.scale > 1: x = self.pool(x) value = self.f_value(x) value = _pp_module(value, self.psp_size) value = paddle.transpose(value, perm=(0, 2, 1)) query = self.f_query(x) query = paddle.reshape(query, shape=(batch_size, self.key_channels, -1)) query = paddle.transpose(query, perm=(0, 2, 1)) key = self.f_key(x) key = _pp_module(key, self.psp_size) sim_map = paddle.matmul(query, key) sim_map = (self.key_channels**-.5) * sim_map sim_map = F.softmax(sim_map, axis=-1) context = paddle.matmul(sim_map, value) context = paddle.transpose(context, perm=(0, 2, 1)) context = paddle.reshape( context, shape=[batch_size, self.value_channels, *x.shape[2:]]) context = self.W(context) return context