# coding: utf8 # copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys import ast import time import json import argparse import numpy as np import cv2 import paddle.fluid as fluid def LoadModel(model_dir, use_gpu=False): prog_file = os.path.join(model_dir, '__model__') params_file = os.path.join(model_dir, '__params__') config = fluid.core.AnalysisConfig(prog_file, params_file) if use_gpu: config.enable_use_gpu(100, 0) config.switch_ir_optim(True) else: config.disable_gpu() config.disable_glog_info() config.switch_specify_input_names(True) config.enable_memory_optim() return fluid.core.create_paddle_predictor(config) class HumanSeg: def __init__(self, model_dir, mean, scale, eval_size, use_gpu=False): self.mean = np.array(mean).reshape((3, 1, 1)) self.scale = np.array(scale).reshape((3, 1, 1)) self.eval_size = eval_size self.predictor = LoadModel(model_dir, use_gpu) def Preprocess(self, image): im = cv2.resize(image, self.eval_size, fx=0, fy=0, interpolation=cv2.INTER_CUBIC) # HWC -> CHW im = im.swapaxes(1, 2) im = im.swapaxes(0, 1) # Convert to float im = im[:, :, :].astype('float32') # im = (im - mean) * scale im = im - self.mean im = im * self.scale im = im[np.newaxis, :, :, :] return im def Postprocess(self, image, output_data): mask = output_data[0, 1, :, :] mask = cv2.resize(mask, (image.shape[1], image.shape[0])) scoremap = np.repeat(mask[:, :, np.newaxis], 3, axis=2) bg = np.ones_like(scoremap) * 255 merge_im = (scoremap * image + (1 - scoremap) * bg).astype(np.uint8) return merge_im def Predict(self, image): ori_im = image.copy() im = self.Preprocess(image) im_tensor = fluid.core.PaddleTensor(im.copy().astype('float32')) output_data = self.predictor.run([im_tensor])[0] output_data = output_data.as_ndarray() return self.Postprocess(image, output_data) # Do Predicting on a image def PredictImage(seg, image_path): im = cv2.imread(input_path) im = seg.Predict(im) cv2.imwrite('result.jpeg', im) # Do Predicting on a video def PredictVideo(seg, video_path): if __name__ == "__main__": if len(sys.argv) < 3: print('Usage: python infer.py /path/to/model/ /path/to/video') exit(0) model_dir = sys.argv[1] input_path = sys.argv[2] use_gpu = int(sys.argv[3]) if len(sys.argv) >= 4 else 0 # Init model mean = [104.008, 116.669, 122.675] scale = [1.0, 1.0, 1.0] eval_size = (192, 192) seg = HumanSeg(model_dir, mean, scale, eval_size, use_gpu)