# coding: utf8 # Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os # GPU memory garbage collection optimization flags os.environ['FLAGS_eager_delete_tensor_gb'] = "0.0" import sys LOCAL_PATH = os.path.dirname(os.path.abspath(__file__)) SEG_PATH = os.path.join(LOCAL_PATH, "../../", "pdseg") sys.path.append(SEG_PATH) import argparse import pprint import random import shutil import functools import paddle import numpy as np import paddle.fluid as fluid from utils.config import cfg from utils.timer import Timer, calculate_eta from metrics import ConfusionMatrix from reader import SegDataset from model_builder import build_model from model_builder import ModelPhase from model_builder import parse_shape_from_file from eval_nas import evaluate from vis import visualize from utils import dist_utils from utils.load_model_utils import load_pretrained_weights from mobilenetv2_search_space import MobileNetV2SpaceSeg from paddleslim.nas.search_space.search_space_factory import SearchSpaceFactory from paddleslim.analysis import flops from paddleslim.nas.sa_nas import SANAS from paddleslim.nas import search_space def parse_args(): parser = argparse.ArgumentParser(description='PaddleSeg training') parser.add_argument( '--cfg', dest='cfg_file', help='Config file for training (and optionally testing)', default=None, type=str) parser.add_argument( '--use_gpu', dest='use_gpu', help='Use gpu or cpu', action='store_true', default=False) parser.add_argument( '--use_mpio', dest='use_mpio', help='Use multiprocess I/O or not', action='store_true', default=False) parser.add_argument( '--log_steps', dest='log_steps', help='Display logging information at every log_steps', default=10, type=int) parser.add_argument( '--debug', dest='debug', help='debug mode, display detail information of training', action='store_true') parser.add_argument( '--use_vdl', dest='use_vdl', help='whether to record the data during training to VisualDL', action='store_true') parser.add_argument( '--vdl_log_dir', dest='vdl_log_dir', help='VisualDL logging directory', default=None, type=str) parser.add_argument( '--do_eval', dest='do_eval', help='Evaluation models result on every new checkpoint', action='store_true') parser.add_argument( 'opts', help='See utils/config.py for all options', default=None, nargs=argparse.REMAINDER) parser.add_argument( '--enable_ce', dest='enable_ce', help='If set True, enable continuous evaluation job.' 'This flag is only used for internal test.', action='store_true') return parser.parse_args() def save_checkpoint(program, ckpt_name): """ Save checkpoint for evaluation or resume training """ ckpt_dir = os.path.join(cfg.TRAIN.MODEL_SAVE_DIR, str(ckpt_name)) print("Save model checkpoint to {}".format(ckpt_dir)) if not os.path.isdir(ckpt_dir): os.makedirs(ckpt_dir) fluid.save(program, os.path.join(ckpt_dir, 'model')) return ckpt_dir def load_checkpoint(exe, program): """ Load checkpoiont for resuming training """ model_path = cfg.TRAIN.RESUME_MODEL_DIR print('Resume model training from:', model_path) if not os.path.exists(model_path): raise ValueError( "TRAIN.PRETRAIN_MODEL {} not exist!".format(model_path)) fluid.load(program, os.path.join(model_path, 'model'), exe) # Check is path ended by path spearator if model_path[-1] == os.sep: model_path = model_path[0:-1] epoch_name = os.path.basename(model_path) # If resume model is final model if epoch_name == 'final': begin_epoch = cfg.SOLVER.NUM_EPOCHS # If resume model path is end of digit, restore epoch status elif epoch_name.isdigit(): epoch = int(epoch_name) begin_epoch = epoch + 1 else: raise ValueError("Resume model path is not valid!") print("Model checkpoint loaded successfully!") return begin_epoch def update_best_model(ckpt_dir): best_model_dir = os.path.join(cfg.TRAIN.MODEL_SAVE_DIR, 'best_model') if os.path.exists(best_model_dir): shutil.rmtree(best_model_dir) shutil.copytree(ckpt_dir, best_model_dir) def print_info(*msg): if cfg.TRAINER_ID == 0: print(*msg) def train(cfg): startup_prog = fluid.Program() train_prog = fluid.Program() if args.enable_ce: startup_prog.random_seed = 1000 train_prog.random_seed = 1000 drop_last = True dataset = SegDataset( file_list=cfg.DATASET.TRAIN_FILE_LIST, mode=ModelPhase.TRAIN, shuffle=True, data_dir=cfg.DATASET.DATA_DIR) def data_generator(): if args.use_mpio: data_gen = dataset.multiprocess_generator( num_processes=cfg.DATALOADER.NUM_WORKERS, max_queue_size=cfg.DATALOADER.BUF_SIZE) else: data_gen = dataset.generator() batch_data = [] for b in data_gen: batch_data.append(b) if len(batch_data) == (cfg.BATCH_SIZE // cfg.NUM_TRAINERS): for item in batch_data: yield item[0], item[1], item[2] batch_data = [] # If use sync batch norm strategy, drop last batch if number of samples # in batch_data is less then cfg.BATCH_SIZE to avoid NCCL hang issues if not cfg.TRAIN.SYNC_BATCH_NORM: for item in batch_data: yield item[0], item[1], item[2] # Get device environment gpu_id = int(os.environ.get('FLAGS_selected_gpus', 0)) place = fluid.CUDAPlace(gpu_id) if args.use_gpu else fluid.CPUPlace() places = fluid.cuda_places() if args.use_gpu else fluid.cpu_places() # Get number of GPU dev_count = cfg.NUM_TRAINERS if cfg.NUM_TRAINERS > 1 else len(places) print_info("#Device count: {}".format(dev_count)) # Make sure BATCH_SIZE can divided by GPU cards assert cfg.BATCH_SIZE % dev_count == 0, ( 'BATCH_SIZE:{} not divisble by number of GPUs:{}'.format( cfg.BATCH_SIZE, dev_count)) # If use multi-gpu training mode, batch data will allocated to each GPU evenly batch_size_per_dev = cfg.BATCH_SIZE // dev_count print_info("batch_size_per_dev: {}".format(batch_size_per_dev)) config_info = {'input_size': 769, 'output_size': 1, 'block_num': 7} config = ([(cfg.SLIM.NAS_SPACE_NAME, config_info)]) factory = SearchSpaceFactory() space = factory.get_search_space(config) port = cfg.SLIM.NAS_PORT server_address = (cfg.SLIM.NAS_ADDRESS, port) sa_nas = SANAS( config, server_addr=server_address, search_steps=cfg.SLIM.NAS_SEARCH_STEPS, is_server=cfg.SLIM.NAS_IS_SERVER) for step in range(cfg.SLIM.NAS_SEARCH_STEPS): arch = sa_nas.next_archs()[0] start_prog = fluid.Program() train_prog = fluid.Program() data_loader, avg_loss, lr, pred, grts, masks = build_model( train_prog, start_prog, arch=arch, phase=ModelPhase.TRAIN) cur_flops = flops(train_prog) print('current step:', step, 'flops:', cur_flops) data_loader.set_sample_generator( data_generator, batch_size=batch_size_per_dev, drop_last=drop_last) exe = fluid.Executor(place) exe.run(start_prog) exec_strategy = fluid.ExecutionStrategy() # Clear temporary variables every 100 iteration if args.use_gpu: exec_strategy.num_threads = fluid.core.get_cuda_device_count() exec_strategy.num_iteration_per_drop_scope = 100 build_strategy = fluid.BuildStrategy() if cfg.NUM_TRAINERS > 1 and args.use_gpu: dist_utils.prepare_for_multi_process(exe, build_strategy, train_prog) exec_strategy.num_threads = 1 if cfg.TRAIN.SYNC_BATCH_NORM and args.use_gpu: if dev_count > 1: # Apply sync batch norm strategy print_info("Sync BatchNorm strategy is effective.") build_strategy.sync_batch_norm = True else: print_info( "Sync BatchNorm strategy will not be effective if GPU device" " count <= 1") compiled_train_prog = fluid.CompiledProgram( train_prog).with_data_parallel( loss_name=avg_loss.name, exec_strategy=exec_strategy, build_strategy=build_strategy) # Resume training begin_epoch = cfg.SOLVER.BEGIN_EPOCH if cfg.TRAIN.RESUME_MODEL_DIR: begin_epoch = load_checkpoint(exe, train_prog) # Load pretrained model elif os.path.exists(cfg.TRAIN.PRETRAINED_MODEL_DIR): load_pretrained_weights(exe, train_prog, cfg.TRAIN.PRETRAINED_MODEL_DIR) else: print_info( 'Pretrained model dir {} not exists, training from scratch...'. format(cfg.TRAIN.PRETRAINED_MODEL_DIR)) fetch_list = [avg_loss.name, lr.name] global_step = 0 all_step = cfg.DATASET.TRAIN_TOTAL_IMAGES // cfg.BATCH_SIZE if cfg.DATASET.TRAIN_TOTAL_IMAGES % cfg.BATCH_SIZE and drop_last != True: all_step += 1 all_step *= (cfg.SOLVER.NUM_EPOCHS - begin_epoch + 1) avg_loss = 0.0 timer = Timer() timer.start() if begin_epoch > cfg.SOLVER.NUM_EPOCHS: raise ValueError( ("begin epoch[{}] is larger than cfg.SOLVER.NUM_EPOCHS[{}]" ).format(begin_epoch, cfg.SOLVER.NUM_EPOCHS)) if args.use_mpio: print_info("Use multiprocess reader") else: print_info("Use multi-thread reader") best_miou = 0.0 for epoch in range(begin_epoch, cfg.SOLVER.NUM_EPOCHS + 1): data_loader.start() while True: try: loss, lr = exe.run( program=compiled_train_prog, fetch_list=fetch_list, return_numpy=True) avg_loss += np.mean(np.array(loss)) global_step += 1 if global_step % args.log_steps == 0 and cfg.TRAINER_ID == 0: avg_loss /= args.log_steps speed = args.log_steps / timer.elapsed_time() print(( "epoch={} step={} lr={:.5f} loss={:.4f} step/sec={:.3f} | ETA {}" ).format(epoch, global_step, lr[0], avg_loss, speed, calculate_eta(all_step - global_step, speed))) sys.stdout.flush() avg_loss = 0.0 timer.restart() except fluid.core.EOFException: data_loader.reset() break except Exception as e: print(e) if epoch > cfg.SLIM.NAS_START_EVAL_EPOCH: ckpt_dir = save_checkpoint(train_prog, '{}_tmp'.format(port)) _, mean_iou, _, mean_acc = evaluate( cfg=cfg, arch=arch, ckpt_dir=ckpt_dir, use_gpu=args.use_gpu, use_mpio=args.use_mpio) if best_miou < mean_iou: print('search step {}, epoch {} best iou {}'.format( step, epoch, mean_iou)) best_miou = mean_iou sa_nas.reward(float(best_miou)) def main(args): if args.cfg_file is not None: cfg.update_from_file(args.cfg_file) if args.opts: cfg.update_from_list(args.opts) if args.enable_ce: random.seed(0) np.random.seed(0) cfg.TRAINER_ID = int(os.getenv("PADDLE_TRAINER_ID", 0)) cfg.NUM_TRAINERS = int(os.environ.get('PADDLE_TRAINERS_NUM', 1)) cfg.check_and_infer() print_info(pprint.pformat(cfg)) train(cfg) if __name__ == '__main__': args = parse_args() if fluid.core.is_compiled_with_cuda() != True and args.use_gpu == True: print( "You can not set use_gpu = True in the model because you are using paddlepaddle-cpu." ) print( "Please: 1. Install paddlepaddle-gpu to run your models on GPU or 2. Set use_gpu=False to run models on CPU." ) sys.exit(1) main(args)