# coding: utf8 # Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os # GPU memory garbage collection optimization flags os.environ['FLAGS_eager_delete_tensor_gb'] = "0.0" import sys import argparse import pprint import random import shutil import numpy as np import paddle.fluid as fluid from paddle.fluid import profiler from utils.config import cfg from utils.timer import Timer, calculate_eta from metrics import ConfusionMatrix from reader import SegDataset from models.model_builder import build_model from models.model_builder import ModelPhase from eval import evaluate from vis import visualize from utils import dist_utils from utils.load_model_utils import load_pretrained_weights def parse_args(): parser = argparse.ArgumentParser(description='PaddleSeg training') parser.add_argument( '--cfg', dest='cfg_file', help='Config file for training (and optionally testing)', default=None, type=str) parser.add_argument( '--use_gpu', dest='use_gpu', help='Use gpu or cpu', action='store_true', default=False) parser.add_argument( '--use_mpio', dest='use_mpio', help='Use multiprocess I/O or not', action='store_true', default=False) parser.add_argument( '--log_steps', dest='log_steps', help='Display logging information at every log_steps', default=10, type=int) parser.add_argument( '--debug', dest='debug', help='debug mode, display detail information of training', action='store_true') parser.add_argument( '--use_vdl', dest='use_vdl', help='whether to record the data during training to VisualDL', action='store_true') parser.add_argument( '--vdl_log_dir', dest='vdl_log_dir', help='VisualDL logging directory', default=None, type=str) parser.add_argument( '--do_eval', dest='do_eval', help='Evaluation models result on every new checkpoint', action='store_true') parser.add_argument( 'opts', help='See utils/config.py for all options', default=None, nargs=argparse.REMAINDER) parser.add_argument( '--enable_ce', dest='enable_ce', help='If set True, enable continuous evaluation job.' 'This flag is only used for internal test.', action='store_true') # NOTE: This for benchmark parser.add_argument( '--is_profiler', help='the profiler switch.(used for benchmark)', default=0, type=int) parser.add_argument( '--profiler_path', help='the profiler output file path.(used for benchmark)', default='./seg.profiler', type=str) return parser.parse_args() def save_checkpoint(program, ckpt_name): """ Save checkpoint for evaluation or resume training """ ckpt_dir = os.path.join(cfg.TRAIN.MODEL_SAVE_DIR, str(ckpt_name)) print("Save model checkpoint to {}".format(ckpt_dir)) if not os.path.isdir(ckpt_dir): os.makedirs(ckpt_dir) fluid.save(program, os.path.join(ckpt_dir, 'model')) return ckpt_dir def load_checkpoint(exe, program): """ Load checkpoiont for resuming training """ model_path = cfg.TRAIN.RESUME_MODEL_DIR print('Resume model training from:', model_path) if not os.path.exists(model_path): raise ValueError( "TRAIN.PRETRAIN_MODEL {} not exist!".format(model_path)) fluid.load(program, os.path.join(model_path, 'model'), exe) # Check is path ended by path spearator if model_path[-1] == os.sep: model_path = model_path[0:-1] epoch_name = os.path.basename(model_path) # If resume model is final model if epoch_name == 'final': begin_epoch = cfg.SOLVER.NUM_EPOCHS # If resume model path is end of digit, restore epoch status elif epoch_name.isdigit(): epoch = int(epoch_name) begin_epoch = epoch + 1 else: raise ValueError("Resume model path is not valid!") print("Model checkpoint loaded successfully!") return begin_epoch def update_best_model(ckpt_dir): best_model_dir = os.path.join(cfg.TRAIN.MODEL_SAVE_DIR, 'best_model') if os.path.exists(best_model_dir): shutil.rmtree(best_model_dir) shutil.copytree(ckpt_dir, best_model_dir) def print_info(*msg): if cfg.TRAINER_ID == 0: print(*msg) def train(cfg): startup_prog = fluid.Program() train_prog = fluid.Program() if args.enable_ce: startup_prog.random_seed = 1000 train_prog.random_seed = 1000 drop_last = True dataset = SegDataset( file_list=cfg.DATASET.TRAIN_FILE_LIST, mode=ModelPhase.TRAIN, shuffle=True, data_dir=cfg.DATASET.DATA_DIR) def data_generator(): if args.use_mpio: data_gen = dataset.multiprocess_generator( num_processes=cfg.DATALOADER.NUM_WORKERS, max_queue_size=cfg.DATALOADER.BUF_SIZE) else: data_gen = dataset.generator() batch_data = [] for b in data_gen: batch_data.append(b) if len(batch_data) == (cfg.BATCH_SIZE // cfg.NUM_TRAINERS): for item in batch_data: yield item[0], item[1], item[2] batch_data = [] # If use sync batch norm strategy, drop last batch if number of samples # in batch_data is less then cfg.BATCH_SIZE to avoid NCCL hang issues if not cfg.TRAIN.SYNC_BATCH_NORM: for item in batch_data: yield item[0], item[1], item[2] # Get device environment gpu_id = int(os.environ.get('FLAGS_selected_gpus', 0)) place = fluid.CUDAPlace(gpu_id) if args.use_gpu else fluid.CPUPlace() places = fluid.cuda_places() if args.use_gpu else fluid.cpu_places() # Get number of GPU dev_count = cfg.NUM_TRAINERS if cfg.NUM_TRAINERS > 1 else len(places) print_info("#Device count: {}".format(dev_count)) # Make sure BATCH_SIZE can divided by GPU cards assert cfg.BATCH_SIZE % dev_count == 0, ( 'BATCH_SIZE:{} not divisble by number of GPUs:{}'.format( cfg.BATCH_SIZE, dev_count)) # If use multi-gpu training mode, batch data will allocated to each GPU evenly batch_size_per_dev = cfg.BATCH_SIZE // dev_count print_info("batch_size_per_dev: {}".format(batch_size_per_dev)) data_loader, avg_loss, lr, pred, grts, masks = build_model( train_prog, startup_prog, phase=ModelPhase.TRAIN) data_loader.set_sample_generator( data_generator, batch_size=batch_size_per_dev, drop_last=drop_last) exe = fluid.Executor(place) exe.run(startup_prog) exec_strategy = fluid.ExecutionStrategy() # Clear temporary variables every 100 iteration if args.use_gpu: exec_strategy.num_threads = fluid.core.get_cuda_device_count() exec_strategy.num_iteration_per_drop_scope = 100 build_strategy = fluid.BuildStrategy() if cfg.NUM_TRAINERS > 1 and args.use_gpu: dist_utils.prepare_for_multi_process(exe, build_strategy, train_prog) exec_strategy.num_threads = 1 if cfg.TRAIN.SYNC_BATCH_NORM and args.use_gpu: if dev_count > 1: # Apply sync batch norm strategy print_info("Sync BatchNorm strategy is effective.") build_strategy.sync_batch_norm = True else: print_info( "Sync BatchNorm strategy will not be effective if GPU device" " count <= 1") compiled_train_prog = fluid.CompiledProgram(train_prog).with_data_parallel( loss_name=avg_loss.name, exec_strategy=exec_strategy, build_strategy=build_strategy) # Resume training begin_epoch = cfg.SOLVER.BEGIN_EPOCH if cfg.TRAIN.RESUME_MODEL_DIR: begin_epoch = load_checkpoint(exe, train_prog) # Load pretrained model elif os.path.exists(cfg.TRAIN.PRETRAINED_MODEL_DIR): load_pretrained_weights(exe, train_prog, cfg.TRAIN.PRETRAINED_MODEL_DIR) else: print_info( 'Pretrained model dir {} not exists, training from scratch...'. format(cfg.TRAIN.PRETRAINED_MODEL_DIR)) fetch_list = [avg_loss.name, lr.name] if args.debug: # Fetch more variable info and use streaming confusion matrix to # calculate IoU results if in debug mode np.set_printoptions( precision=4, suppress=True, linewidth=160, floatmode="fixed") fetch_list.extend([pred.name, grts.name, masks.name]) cm = ConfusionMatrix(cfg.DATASET.NUM_CLASSES, streaming=True) if args.use_vdl: if not args.vdl_log_dir: print_info("Please specify the log directory by --vdl_log_dir.") exit(1) from visualdl import LogWriter log_writer = LogWriter(args.vdl_log_dir) # trainer_id = int(os.getenv("PADDLE_TRAINER_ID", 0)) # num_trainers = int(os.environ.get('PADDLE_TRAINERS_NUM', 1)) step = 0 all_step = cfg.DATASET.TRAIN_TOTAL_IMAGES // cfg.BATCH_SIZE if cfg.DATASET.TRAIN_TOTAL_IMAGES % cfg.BATCH_SIZE and drop_last != True: all_step += 1 all_step *= (cfg.SOLVER.NUM_EPOCHS - begin_epoch + 1) avg_loss = 0.0 best_mIoU = 0.0 timer = Timer() timer.start() if begin_epoch > cfg.SOLVER.NUM_EPOCHS: raise ValueError( ("begin epoch[{}] is larger than cfg.SOLVER.NUM_EPOCHS[{}]").format( begin_epoch, cfg.SOLVER.NUM_EPOCHS)) if args.use_mpio: print_info("Use multiprocess reader") else: print_info("Use multi-thread reader") for epoch in range(begin_epoch, cfg.SOLVER.NUM_EPOCHS + 1): data_loader.start() while True: try: if args.debug: # Print category IoU and accuracy to check whether the # traning process is corresponed to expectation loss, lr, pred, grts, masks = exe.run( program=compiled_train_prog, fetch_list=fetch_list, return_numpy=True) cm.calculate(pred, grts, masks) avg_loss += np.mean(np.array(loss)) step += 1 if step % args.log_steps == 0: speed = args.log_steps / timer.elapsed_time() avg_loss /= args.log_steps category_acc, mean_acc = cm.accuracy() category_iou, mean_iou = cm.mean_iou() print_info(( "epoch={} step={} lr={:.5f} loss={:.4f} acc={:.5f} mIoU={:.5f} step/sec={:.3f} | ETA {}" ).format(epoch, step, lr[0], avg_loss, mean_acc, mean_iou, speed, calculate_eta(all_step - step, speed))) print_info("Category IoU: ", category_iou) print_info("Category Acc: ", category_acc) if args.use_vdl: log_writer.add_scalar('Train/mean_iou', mean_iou, step) log_writer.add_scalar('Train/mean_acc', mean_acc, step) log_writer.add_scalar('Train/loss', avg_loss, step) log_writer.add_scalar('Train/lr', lr[0], step) log_writer.add_scalar('Train/step/sec', speed, step) sys.stdout.flush() avg_loss = 0.0 cm.zero_matrix() timer.restart() else: # If not in debug mode, avoid unnessary log and calculate loss, lr = exe.run( program=compiled_train_prog, fetch_list=fetch_list, return_numpy=True) avg_loss += np.mean(np.array(loss)) step += 1 if step % args.log_steps == 0 and cfg.TRAINER_ID == 0: avg_loss /= args.log_steps speed = args.log_steps / timer.elapsed_time() print(( "epoch={} step={} lr={:.5f} loss={:.4f} step/sec={:.3f} | ETA {}" ).format(epoch, step, lr[0], avg_loss, speed, calculate_eta(all_step - step, speed))) if args.use_vdl: log_writer.add_scalar('Train/loss', avg_loss, step) log_writer.add_scalar('Train/lr', lr[0], step) log_writer.add_scalar('Train/speed', speed, step) sys.stdout.flush() avg_loss = 0.0 timer.restart() # NOTE : used for benchmark, profiler tools if args.is_profiler and epoch == 1 and step == args.log_steps: profiler.start_profiler("All") elif args.is_profiler and epoch == 1 and step == args.log_steps + 5: profiler.stop_profiler("total", args.profiler_path) return except fluid.core.EOFException: data_loader.reset() break except Exception as e: print(e) if (epoch % cfg.TRAIN.SNAPSHOT_EPOCH == 0 or epoch == cfg.SOLVER.NUM_EPOCHS) and cfg.TRAINER_ID == 0: ckpt_dir = save_checkpoint(train_prog, epoch) if args.do_eval: print("Evaluation start") _, mean_iou, _, mean_acc = evaluate( cfg=cfg, ckpt_dir=ckpt_dir, use_gpu=args.use_gpu, use_mpio=args.use_mpio) if args.use_vdl: log_writer.add_scalar('Evaluate/mean_iou', mean_iou, step) log_writer.add_scalar('Evaluate/mean_acc', mean_acc, step) if mean_iou > best_mIoU: best_mIoU = mean_iou update_best_model(ckpt_dir) print_info("Save best model {} to {}, mIoU = {:.4f}".format( ckpt_dir, os.path.join(cfg.TRAIN.MODEL_SAVE_DIR, 'best_model'), mean_iou)) # Use VisualDL to visualize results if args.use_vdl and cfg.DATASET.VIS_FILE_LIST is not None: visualize( cfg=cfg, use_gpu=args.use_gpu, vis_file_list=cfg.DATASET.VIS_FILE_LIST, vis_dir="visual", ckpt_dir=ckpt_dir, log_writer=log_writer) # save final model if cfg.TRAINER_ID == 0: save_checkpoint(train_prog, 'final') def main(args): if args.cfg_file is not None: cfg.update_from_file(args.cfg_file) if args.opts: cfg.update_from_list(args.opts) if args.enable_ce: random.seed(0) np.random.seed(0) cfg.TRAINER_ID = int(os.getenv("PADDLE_TRAINER_ID", 0)) cfg.NUM_TRAINERS = int(os.environ.get('PADDLE_TRAINERS_NUM', 1)) cfg.check_and_infer() print_info(pprint.pformat(cfg)) train(cfg) if __name__ == '__main__': args = parse_args() if fluid.core.is_compiled_with_cuda() != True and args.use_gpu == True: print( "You can not set use_gpu = True in the model because you are using paddlepaddle-cpu." ) print( "Please: 1. Install paddlepaddle-gpu to run your models on GPU or 2. Set use_gpu=False to run models on CPU." ) sys.exit(1) main(args)