# coding: utf8 # Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from datasets.dataset import Dataset import transforms import models def parse_args(): parser = argparse.ArgumentParser(description='HumanSeg training') parser.add_argument( '--model_dir', dest='model_dir', help='Model path for quant', type=str, default='output/best_model') parser.add_argument( '--batch_size', dest='batch_size', help='Mini batch size', type=int, default=1) parser.add_argument( '--batch_nums', dest='batch_nums', help='Batch number for quant', type=int, default=10) parser.add_argument( '--data_dir', dest='data_dir', help='the root directory of dataset', type=str) parser.add_argument( '--quant_list', dest='quant_list', help= 'Image file list for model quantization, it can be vat.txt or train.txt', type=str, default=None) parser.add_argument( '--save_dir', dest='save_dir', help='The directory for saving the quant model', type=str, default='./output/quant_offline') parser.add_argument( "--image_shape", dest="image_shape", help="The image shape for net inputs.", nargs=2, default=[192, 192], type=int) return parser.parse_args() def evaluate(args): eval_transforms = transforms.Compose( [transforms.Resize(args.image_shape), transforms.Normalize()]) eval_dataset = Dataset( data_dir=args.data_dir, file_list=args.quant_list, transforms=eval_transforms, num_workers='auto', buffer_size=100, parallel_method='thread', shuffle=False) model = models.load_model(args.model_dir) model.export_quant_model( dataset=eval_dataset, save_dir=args.save_dir, batch_size=args.batch_size, batch_nums=args.batch_nums) if __name__ == '__main__': args = parse_args() evaluate(args)