# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import numpy as np import math import cv2 import paddle.fluid as fluid from . import logging def seconds_to_hms(seconds): h = math.floor(seconds / 3600) m = math.floor((seconds - h * 3600) / 60) s = int(seconds - h * 3600 - m * 60) hms_str = "{}:{}:{}".format(h, m, s) return hms_str def get_environ_info(): info = dict() info['place'] = 'cpu' info['num'] = int(os.environ.get('CPU_NUM', 1)) if os.environ.get('CUDA_VISIBLE_DEVICES', None) != "": if hasattr(fluid.core, 'get_cuda_device_count'): gpu_num = 0 try: gpu_num = fluid.core.get_cuda_device_count() except: os.environ['CUDA_VISIBLE_DEVICES'] = '' pass if gpu_num > 0: info['place'] = 'cuda' info['num'] = fluid.core.get_cuda_device_count() return info def load_pretrained_model(model, pretrained_model): logging.info('Load pretrained model!') if pretrained_model is not None: if os.path.exists(pretrained_model): ckpt_path = os.path.join(pretrained_model, 'model') para_state_dict, _ = fluid.load_dygraph(ckpt_path) model_state_dict = model.state_dict() keys = model_state_dict.keys() num_params_loaded = 0 for k in keys: if k not in para_state_dict: logging.warning("{} is not in pretrained model".format(k)) elif list(para_state_dict[k].shape) != list( model_state_dict[k].shape): logging.warning( "[SKIP] Shape of pretrained params {} doesn't match.(Pretrained: {}, Actual: {})" .format(k, para_state_dict[k].shape, model_state_dict[k].shape)) else: model_state_dict[k] = para_state_dict[k] num_params_loaded += 1 model.set_dict(model_state_dict) logging.info("There are {}/{} varaibles are loaded.".format( num_params_loaded, len(model_state_dict))) else: raise ValueError( 'The pretrained model directory is not Found: {}'.formnat( pretrained_model)) def visualize(image, result, save_dir=None, weight=0.6): """ Convert segment result to color image, and save added image. Args: image: the path of origin image result: the predict result of image save_dir: the directory for saving visual image weight: the image weight of visual image, and the result weight is (1 - weight) """ color_map = get_color_map_list(256) color_map = np.array(color_map).astype("uint8") # Use OpenCV LUT for color mapping c1 = cv2.LUT(result, color_map[:, 0]) c2 = cv2.LUT(result, color_map[:, 1]) c3 = cv2.LUT(result, color_map[:, 2]) pseudo_img = np.dstack((c1, c2, c3)) im = cv2.imread(image) vis_result = cv2.addWeighted(im, weight, pseudo_img, 1 - weight, 0) if save_dir is not None: if not os.path.exists(save_dir): os.makedirs(save_dir) image_name = os.path.split(image)[-1] out_path = os.path.join(save_dir, image_name) cv2.imwrite(out_path, vis_result) else: return vis_result def get_color_map_list(num_classes): """ Returns the color map for visualizing the segmentation mask, which can support arbitrary number of classes. Args: num_classes: Number of classes Returns: The color map """ num_classes += 1 color_map = num_classes * [0, 0, 0] for i in range(0, num_classes): j = 0 lab = i while lab: color_map[i * 3] |= (((lab >> 0) & 1) << (7 - j)) color_map[i * 3 + 1] |= (((lab >> 1) & 1) << (7 - j)) color_map[i * 3 + 2] |= (((lab >> 2) & 1) << (7 - j)) j += 1 lab >>= 3 color_map = [color_map[i:i + 3] for i in range(0, len(color_map), 3)] color_map = color_map[1:] return color_map