# coding: utf8 # Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from test_utils import download_file_and_uncompress, train, eval, vis, export_model import os import argparse LOCAL_PATH = os.path.dirname(os.path.abspath(__file__)) DATASET_PATH = os.path.join(LOCAL_PATH, "..", "dataset") MODEL_PATH = os.path.join(LOCAL_PATH, "models") def download_cityscapes_dataset(savepath, extrapath): url = "https://paddleseg.bj.bcebos.com/dataset/cityscapes.tar" download_file_and_uncompress( url=url, savepath=savepath, extrapath=extrapath) def download_deeplabv3p_xception65_cityscapes_model(savepath, extrapath): url = "https://paddleseg.bj.bcebos.com/models/deeplabv3p_xception65_cityscapes.tgz" download_file_and_uncompress( url=url, savepath=savepath, extrapath=extrapath) if __name__ == "__main__": download_cityscapes_dataset(".", DATASET_PATH) download_deeplabv3p_xception65_cityscapes_model(".", MODEL_PATH) model_name = "deeplabv3p_xception65_cityscapes" test_model = os.path.join(LOCAL_PATH, "models", model_name) cfg = os.path.join(LOCAL_PATH, "configs", "{}.yaml".format(model_name)) freeze_save_dir = os.path.join(LOCAL_PATH, "inference_model", model_name) vis_dir = os.path.join(LOCAL_PATH, "visual", model_name) saved_model = os.path.join(LOCAL_PATH, "saved_model", model_name) parser = argparse.ArgumentParser(description="PaddleSeg loacl test") parser.add_argument( "--devices", dest="devices", help="GPU id of running. if more than one, use spacing to separate.", nargs="+", default=[0], type=int) args = parser.parse_args() devices = [str(x) for x in args.devices] export_model( flags=["--cfg", cfg], options=[ "TEST.TEST_MODEL", test_model, "FREEZE.SAVE_DIR", freeze_save_dir ], devices=devices) # Final eval results should be #image=500 acc=0.9615 IoU=0.7804 eval( flags=["--cfg", cfg, "--use_gpu"], options=["TEST.TEST_MODEL", test_model], devices=devices) vis(flags=["--cfg", cfg, "--use_gpu", "--local_test", "--vis_dir", vis_dir], options=["TEST.TEST_MODEL", test_model], devices=devices) train( flags=["--cfg", cfg, "--use_gpu", "--log_steps", "10"], options=[ "SOLVER.NUM_EPOCHS", "1", "TRAIN.PRETRAINED_MODEL_DIR", test_model, "TRAIN.MODEL_SAVE_DIR", saved_model ], devices=devices)